Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Coordinating Tethered Autonomous Underwater Vehicles Towards Entanglement-Free Navigation, Abhishek Patil, Myoungkuk Park, Jungyun Bae Jun 2023

Coordinating Tethered Autonomous Underwater Vehicles Towards Entanglement-Free Navigation, Abhishek Patil, Myoungkuk Park, Jungyun Bae

Michigan Tech Publications

This paper proposes an algorithm that provides operational strategies for multiple tethered autonomous underwater vehicle (T-AUV) systems for entanglement-free navigation. T-AUVs can perform underwater tasks under reliable communication and power supply, which is the most substantial benefit of their operation. Thus, if one can overcome the entanglement issues while utilizing multiple tethered vehicles, the potential applications of the system increase including ecosystem exploration, infrastructure inspection, maintenance, search and rescue, underwater construction, and surveillance. In this study, we focus on developing strategies for task allocation, path planning, and scheduling that ensure entanglement-free operations while considering workload balancing among the vehicles. We …


An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park Jul 2022

An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park

Michigan Tech Publications

This paper proposes an algorithm that provides operational strategies for multiple heterogeneous mobile robot systems utilized in many real-world applications, such as deliveries, surveillance, search and rescue, monitoring, and transportation. Specifically, the authors focus on developing an algorithm that solves a min-max multiple depot heterogeneous asymmetric traveling salesperson problem (MDHATSP). The algorithm is designed based on a primal-dual technique to operate given multiple heterogeneous robots located at distinctive depots by finding a tour for each robot such that all the given targets are visited by at least one robot while minimizing the last task completion time. Building on existing work, …


Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …