Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Brigham Young University

Path planning

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich Mar 2006

Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

This paper presents a path planner for sensing closely-spaced targets from a fixed-wing unmanned air vehicle (UAV) having a specified sensor footprint. The planner is based on the learning real-time A* (LRTA*) search algorithm and produces dynamically feasible paths that accomplish the sensing objectives in the shortest possible distance. A tree of candidate paths that span the area of interest is created by assembling primitive turn and straight sections of a specified step size in a sequential fashion from the starting position of the UAV. An LRTA* search of the tree produces feasible paths any time during its execution and …


Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain Aug 2003

Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain

Faculty Publications

This work develops an any-time path planner, based on the learning real-time A* (LRTA*) search, for generating flyable paths that allow an aircraft with a specified sensor footprint to sense a group of closely-spaced targets. The LRTA* algorithm searches a tree of flyable paths for the branch that accomplishes the desired objectives in the shortest distance. The tree of paths is created by assembling primitive turn and straight sections of a specified step size. The operating parameters for the LRTA* search directly influence the running time and path-length performance of the search. A modified LRTA* search is presented that terminates …