Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Complex Fluids

PDF

Daniel Attinger

Selected Works

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger Oct 2010

Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger

Daniel Attinger

We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 μl/s/mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported toward the gas removal …


A Bubble-Powered Micro-Rotor: Conception, Manufacturing, Assembly And Characterization, Jonathan Kao, Xiaolin Wang, John Warren, Jie Xu, Daniel Attinger Dec 2007

A Bubble-Powered Micro-Rotor: Conception, Manufacturing, Assembly And Characterization, Jonathan Kao, Xiaolin Wang, John Warren, Jie Xu, Daniel Attinger

Daniel Attinger

A steady fluid flow, called microstreaming, can be generated in the vicinity of a micro-bubble excited by ultrasound. In this paper, we use this phenomenon to assemble and power a microfabricated rotor at rotation speeds as high as 625 rpm. The extractible power is estimated to be of the order of a few femtowatts. A first series of experiments with uncontrolled rotor shapes is presented, demonstrating the possibility of this novel actuation scheme. A second series of experiments with 65 µm rotors micromanufactured in SU-8 resin is then presented. Variables controlling the rotation speed and rotor stability are investigated, such …


Control And Ultrasonic Actuation Of A Gas–Liquid Interface In A Microfluidic Chip, Jie Xu, Daniel Attinger Mar 2007

Control And Ultrasonic Actuation Of A Gas–Liquid Interface In A Microfluidic Chip, Jie Xu, Daniel Attinger

Daniel Attinger

This paper describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas–liquid interface and of the neighboring fluid. The first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to a theoretical result. The second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At …