Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov May 2021

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov

Chemical Technology, Control and Management

The article deals with the problems of numerical modeling of nonlinear physical processes of the stress-strain state of structural elements. An elastoplastic medium of a homogeneous solid material is investigated. The results of computational experiments on the study of the process of physically nonlinear deformation of isotropic elements of three-dimensional structures with a system of one- and double-periodic spherical cavities under uniaxial compression are presented. The influence and mutual influence of stress concentrators in the form of spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the deformation of the structure are investigated. Numerical …


Numerical Study Of Paraffin Wax Melting In A Cavity With A Gradient Of Hot Wall Inclination, Agus Dwi Korawan Aug 2020

Numerical Study Of Paraffin Wax Melting In A Cavity With A Gradient Of Hot Wall Inclination, Agus Dwi Korawan

Makara Journal of Technology

The melting of a phase change material (PCM) in a cavity with a gradient of hot wall inclination was simulated numerically using five models, namely, Model-A, Model-B, Model-C, Model-D, and Model-E with gradients of −2, −4, ∞, 4, and 2, respectively. The PCM was paraffin wax, which was melted using an enthalpy porosity technique with a pressure-based method. Model-A was found to be the best model. For the completion of the melting process, the models were assigned with the liquid fraction of 1. Model-A required the shortest time, followed by Model-B, Model-C, Model-E, and Model-D, respectively. Compared with Model-C, Model-A …


Analytical And Computational Simulation Approaches To Design Low Energy Glass Block, Floriberta Binarti, Agustinus Djoko Istiadji, Prasasto Satwiko, Priyo Tri Iswanto Nov 2011

Analytical And Computational Simulation Approaches To Design Low Energy Glass Block, Floriberta Binarti, Agustinus Djoko Istiadji, Prasasto Satwiko, Priyo Tri Iswanto

Makara Journal of Technology

Analytical and Computational Simulation Approaches to Design Low Energy Glass Block. An environmentally friendly process was developed to produce a low embodied energy glass block from waste glasses. The energy efficiency of the glass block is represented by its thermal conductance (U) <3.177 W/m2.K and solar transmittance (SHGC) ≤0.25 as well as visible light transmission (VT) ≥0.27. A cavity was applied to reduce U value while insignificantly reducing VT. Analytical method was used to calculate the U value of glass blocks, ignoring the effect of convection. Ecotect program was used to analyze light level (VT) and heat load (SHGC) of each model. Effect of convection was simulated using a CFD program, which showed air velocity inside the cavity and temperature gradient in glass blocks. Comparing to an application with 3 mm float glass, energy efficiency obtained through applying the glass blocks could reach 96%. This simulation study ignored the presence of adhesive among glass layers that potentially reduces the VT and the SHGC of the glass blocks.