Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds Apr 2022

Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds

Conference Papers

Anaerobic digestion processes can generate energy in the form of biogas while treating organic wastewater. The efficiency of the treatment, and thus the generation of biogas, is closely linked to the type and design of the reactor, and the technology used. Granular anaerobic digestion technology offers advantages such as a higher loading rate and reduction of the space needed. However, the hydrodynamics inside this type of reactor can be complex due to the presence of solids (granules) and gas (biogas) phases along with the liquid phase (wastewater). This is one of the reasons why the study and optimization of reactors …


A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison Jan 2022

A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison

Electronic Theses and Dissertations

Computational fluid dynamics (CFD) models of the ProtoDUNE single-phase detector were developed, refined, and analyzed. The ProtoDUNE single-phase detector is a prototype detector that is part of the Deep Underground Neutrino Experiment, an international research collaboration aimed at better understanding neutrinos and the role they play in our universe. The ProtoDUNE single-phase detector is used to gather data and inform design changes for the full-sized far detector prior to its construction. The effects of certain geometric features and heat sources on the thermal profiles within the liquid region of the detector were investigated in a set of parametric studies. The …


A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


Three-Phase Hydrodynamic Simulation And Experimental Validation Of An Upflow Anaerobic Sludge Blanket Reactor, Camila D' Bastiani, Jéferson Luis Alba, Gabriel Tomazzoni Mazzarotto, Severino Rodrigues De Farias Neto, Anthony Reynolds, David Kennedy, Lademir Luiz Beal Mar 2020

Three-Phase Hydrodynamic Simulation And Experimental Validation Of An Upflow Anaerobic Sludge Blanket Reactor, Camila D' Bastiani, Jéferson Luis Alba, Gabriel Tomazzoni Mazzarotto, Severino Rodrigues De Farias Neto, Anthony Reynolds, David Kennedy, Lademir Luiz Beal

Articles

This research focuses on performing multiphase solid/liquid/gas CFD simulations of a UASB reactor in order to obtain a validated model that provides a clearer understanding of the hydrodynamic behaviour of the three phases in UASB reactors. Eulerian–Eulerian, laminar, three-dimensional, multiphase simulations are carried out using Fluent 16.2. The liquid phase velocity and flow profile are validated through PIV experiments. A liquid mean velocity difference of 8.45% is found between the experimental and numerical results, thus validating the CFD model. Shadowgraphy is applied successfully to validate the biogas phase velocity and bubble size. Based on the hydrodynamic analysis results, the reactor …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose Dec 2018

Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose

Master's Theses

At Amgen, the Automated Vision Inspection (AVI) systems capture the movement of unwanted particles in Amgen's drug product containers. For quality inspection, the AVI system must detect these undesired particles using a high speed spin-stop agitation process. To better understand the fluid movements to swirl the particles away from the walls, Computational Fluid Dynamics (CFD) is used to analyze the nature of the two phase flow of air and a liquid solution.

Several 2-D and 3-D models were developed using Fluent to create simulations of Amgen's drug product containers for a 1 mL syringe, 2.25 mL syringe, and a 5 …


Cfd/Fea Of A Steam Methane Reforming Tube, Matthew Wegener Jan 2018

Cfd/Fea Of A Steam Methane Reforming Tube, Matthew Wegener

Research Opportunities for Engineering Undergraduates (ROEU) Program 2017-18

Steam methane reforming is the primary method by which hydrogen is produced; increased efficiency in hydrogen production could enable hydrogen’s usage as an alternative fuel. The objectives of this project are to construct a robust CFD/FEA model of a steam methane reforming tube, and to perform CFD/FEA analysis in both steady and transient operational states, comparing thermal stresses/strains in the tube wall in the two states and relating tube stresses/strains to properties of the process controller.


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam Dec 2017

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges. …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


Modelling Three-Phase Flow In Metallurgical Processes, Christoph Goniva, Gijsbert Wierink, Kari Heiskanen, Stefan Pirker, Christoph Kloss Dec 2012

Modelling Three-Phase Flow In Metallurgical Processes, Christoph Goniva, Gijsbert Wierink, Kari Heiskanen, Stefan Pirker, Christoph Kloss

Gijsbert Wierink

The interaction between gasses, liquids, and solids plays a critical role in many processes, such as coating, granulation and the blast furnace process. In this paper we present a comprehensive numerical model for three phase flow including droplets, particles and gas. By means of a coupled Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) approach the physical core phenomena are pictured at a detailed level. Sub-models for droplet deformation, breakup and coalescence as well as droplet-particle and wet particle-particle interaction are applied. The feasibility of this model approach is demonstrated by its application to a rotating drum coater. The …