Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri Jan 2023

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles are equipped with Thermal Protection Systems (TPS) that encounter high heat rates and protect the payload while entering a planetary atmosphere. For most missions that interest NASA, ablative materials are used as TPS. These materials undergo several mass and energy transfer mechanisms to absorb intense heat. The size and construction of the TPS are based on the composition of the planetary atmosphere and the impact of various ablative mechanisms on the flow field and the material. Therefore, it is essential to quantify the rates of different ablative phenomena to model TPS accurately. In this work, the impact of …


A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito Sep 2022

A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito

Progress in Scale Modeling, an International Journal

We conducted volume of fluids (VOF) multiphase model numerical simulations to obtain the interaction among all the major governing forces identified in our previous paper. Our numerical experiments are intended to assess the droplet generation process and the jetting behavior by providing specific input conditions, offering CFD as a tool to study scaling correlations instead of physical experiments. Water droplets that can represent waterborne paints were generated by piezo-generated sinusoidal waveforms at the inlet of the nozzle. The governing forces included the external piezo-based wave-generation force, the inertial force of droplets, the inertial force of air, the viscose force of …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro Oct 2021

Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro

Center for Applied Energy Research Faculty and Staff Publications

In this contribution, we examine the effect of the promoter´s ionic charge and valence orbital energy on the catalytic activity of Fe-based catalysts, based on in situ synchrotron X-ray powder diffraction (SXRPD), temperature-programmed-based techniques (TPR, TPD, CO-TP carburization), and Fischer–Tropsch synthesis catalytic testing studies. We compared the promoting effects of K (a known promoter for longer-chained products) with Ba, which has a similar ionic radius but has double the ionic charge. Despite being partially “buried” in a crystalline BaCO3 phase, the carburization of the Ba-promoted catalyst was more effective than that of K; this was primarily due to its …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Effects Of Dimensionless Numbers On Decomposition Of Methane Hydrate, Shoma Shimizu, Genichiro Kushida Feb 2021

Effects Of Dimensionless Numbers On Decomposition Of Methane Hydrate, Shoma Shimizu, Genichiro Kushida

Progress in Scale Modeling, an International Journal

It is necessary to elucidate the decomposition and combustion of methane hydrate for fire safety during transportation and storage to utilize it for commercial practice. The amount of methane evolved during the decomposition of methane hydrates is affected by the conditions such as the initial temperature, initial density and ambient temperature. In the present study, the internal temperature of methane hydrate and the amount of methane evolved during its decomposition were investigated by a dimensionless numerical analysis using a transient one-dimensional conduction model from a symmetrical methane hydrate ball heated by ambient air. The numerically calculated central temperature and the …


Fingering Behavior Of Flame Spread Over Solid Combustibles, Tsuneyoshi Matsuoka, Kentaro Nakashima, Takuma Kajimoto, Akihiro Yoshimasa, Yuji Nakamura Feb 2021

Fingering Behavior Of Flame Spread Over Solid Combustibles, Tsuneyoshi Matsuoka, Kentaro Nakashima, Takuma Kajimoto, Akihiro Yoshimasa, Yuji Nakamura

Progress in Scale Modeling, an International Journal

In this study, the fingering pattern formation and the following flamelet spreading over three different kinds of thick combustibles, i.e., Poly methacrylate (PMMA), Poly ethylene (PE) and Poly carbonate (PC) were observed and the effective Lewis number correlation was validated. Experiments were performed with a narrow channel apparatus. In addition to the kinds of solid fuel materials, the channel height and the oxidizer velocity were varied as experimental parameters. An image analysis method was developed to quantify the number, diameter and spread rate of the flamelets. Replacing the fuel thickness into the thermal thickness, the effective Lewis number which is …


Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh Jan 2021

Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh

Progress in Scale Modeling, an International Journal

For decades, traditional scale-modeling techniques have been relying on first-principles models (FPMs). FPMs have been used to find non-dimensional numbers (PIs) and identify normalized underlying forces and energies behind the phenomenon in focus. The two main challenges with FPM-based PIs extraction are finding the relevant PIs and proper correlations between PIs. The emergence and surge of data-driven modeling (DDM) provide a new opportunity to leverage experimental data in model development across scales/plants. In this paper, first, the two mentioned issues in PIs development will be elaborated to reveal the gap, and second, a new insight into scale modeling and similarity …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …


Optimization Of Induction Quenching Processes For Hss Roll Based On Mmpt Model, Ligang Liu, Hui Yu, Zhiqiang Yang, Chunmei Zhao, Tongguang Zhai Jun 2019

Optimization Of Induction Quenching Processes For Hss Roll Based On Mmpt Model, Ligang Liu, Hui Yu, Zhiqiang Yang, Chunmei Zhao, Tongguang Zhai

Chemical and Materials Engineering Faculty Publications

To improve the comprehensive performance of high speed steel (HSS) cold rolls, the induction hardening processes were analyzed by numerical simulation and experimental research. Firstly, a modified martensitic phase transformation (MMPT) model of the tested steel under stress constraints was established. Then, the MMPT model was fed into DEFORM to simulate the induction quenching processes of working rolls based on an orthogonal test design and the optimal dual frequency of the induction quenching process was obtained. The results indicate that the depth of the roll’s hardened layer increases by 32.5% and the axial residual tensile stress also becomes acceptable under …


Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang Jun 2019

Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

In this study, we analyze the transient diffuse-induced-deformation of an electrode consisting of the conducting polymer polypyrrole (PPY) by using the theories of linear viscoelasticity and diffusion-induced stress. We consider two constitutive relationships with dependence of viscosity on strain rate: Kelvin-Voigt model and three-parameter solid model. A numerical method is used to solve the problem of one-dimensional, transient diffusion-induced-deformation under potentiostatic operation. The numerical results reveal that the maximum displacement occurs at the free surface and the maximum stress occurs at the fixed end. The inertia term causes the stress to increase at the onset of lithiation. The stress decreases …


Fluorescence Of Cdse/Zns Quantum Dots In Toluene: Effect Of Cyclic Temperature, Ting Chen, Weiling Luan, Shaofu Zhang, Fuqian Yang Feb 2019

Fluorescence Of Cdse/Zns Quantum Dots In Toluene: Effect Of Cyclic Temperature, Ting Chen, Weiling Luan, Shaofu Zhang, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

Quantum dots (QDs) are the potential material for the application in optical thermometry, and have been successfully applied to solar cells, LEDs, bio-labeling, structural health monitoring, etc. In this paper, we study the fluorescence properties of CdSe/ZnS QDs in toluene under the action of heating-cooling cycles. The experimental results show that, in a heating-cooling cycle, increasing temperature causes red-shift of the emission peak and the decrease of the PL intensity, and decreasing temperature causes blue-shift of the emission peak and the increase of the PL intensity. The surface structures of the QDs likely are dependent on the cycle numbers, which …


Performance Of C2H4 Reductant In Activated-Carbon-Supported Mnox-Based Scr Catalyst At Low Temperatures, Guangli Liu, Dongtai Han, Jie Cheng, Yongshi Feng, Wenbin Quan, Li Yang, Kozo Saito Dec 2018

Performance Of C2H4 Reductant In Activated-Carbon-Supported Mnox-Based Scr Catalyst At Low Temperatures, Guangli Liu, Dongtai Han, Jie Cheng, Yongshi Feng, Wenbin Quan, Li Yang, Kozo Saito

Mechanical Engineering Faculty Publications

Hydrocarbons as reductants show promising results for replacing NH3 in SCR technology. Therefore, considerable interest exists for developing low-temperature (< 200 °C) and environmentally friendly HC-SCR catalysts. Hence, C2H4 was examined as a reductant using activated-carbon-supported MnOx-based catalyst in low-temperature SCR operation. Its sensitivity to Mn concentration and operating temperature was parametrically studied, the results of which showed that the catalyst activity followed the order of 130 °C > 150 °C > 180 °C with an optimized Mn concentration near 3.0 wt.%. However, rapid deactivation of catalytic activity also occurred when using C2H4 as the reductant. The mechanism of deactivation was explored and is …


Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill Jan 2018

Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill

Theses and Dissertations--Mechanical Engineering

The effects of system pressure on the performance stability of flow-through capacitive deionization (CDI) cells was investigated. Initial data showed that the highly porous carbon electrodes possessed air/oxygen in the micropores, and the increased system pressure boosts the gases solubility in saline solution and carries them out of the cell in the effluent. Upon applying a potential difference to the electrodes, capacitive-based ion adsorption occurs in competition with faradaic reactions that consume oxygen. Through the addition of backpressure, the rate of degradation decreases, allowing the cell to maintain its salt adsorption capacity (SAC) longer. The removal of oxygen from the …


Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson Jan 2018

Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson

Theses and Dissertations--Mechanical Engineering

Three methods were developed to better understand and characterize the near-field dynamic processes of rotary bell atomization. The methods were developed with the goal of possible integration into industry to identify equipment changes through changes in the primary atomization of the bell. The first technique utilized high-speed imaging to capture qualitative ligament breakup and, in combination with a developed image processing technique and PIV software, was able to gain statistical size and velocity information about both ligaments and droplets in the image data. A second technique, using an Nd:YAG laser with an optical filter, was used to capture size statistics …


Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi Jan 2018

Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi

Theses and Dissertations--Mechanical Engineering

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length-scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions, due to the imperfect characterization of the upper bound of the inertial cascade by the integral length-scale. When a length-scale based on Townsend's …


NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes Jan 2018

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes

Theses and Dissertations--Mechanical Engineering

This study explores the reactions and related species of NOx pollutants in methane flames in order to understand their production and consumption during the combustion process. To do this, several analytical simulations were run to explore the behavior of nitrogen species in the pre-flame, post- flame, and reaction layer regions. The results were then analyzed in order to identify all "steady-state" species in the flame as well as the determine all the unnecessary reactions and species that are not required to meet a defined accuracy. The reductions were then applied and proven to be viable.


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Diffusion-Mediated Deposition Of Proteins, Ruiqian Zhan Jan 2016

Diffusion-Mediated Deposition Of Proteins, Ruiqian Zhan

Theses and Dissertations--Mechanical Engineering

Gradients of proteins play a prominent role in many biological processes, from development of multicellular organisms to chemical signaling in the immune system. Deposition of surface gradients is a way to permanently modifying a surface’s properties, resulting in the creation of novel materials which have widespread applications in biologically relevant fields, such as directed cell growth, production of biocompatible implantable materials, and creation of functional biosensors. These types of surfaces can also be used as an ex vivo tool to help understand many biological processes by mimicking the environment in gradient-related phenomena in a controllable way. However, despite the large …


Modeling Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Sai Chaitanya Davuluri Jan 2015

Modeling Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles, while entering the planetary atmosphere, experience high loads of heat. Ablative materials are commonly used for a thermal protection system, which undergo mass removal mechanisms to counter the heat rates. Spallation is one of the ablative processes, which is characterized by the ejection of solid particles from the material into the flow. Numerical codes that are used in designing the heat shields ignore this phenomenon. Hence, to evaluate the effectiveness of spallation phenomenon, a numerical model is developed to compute the dynamics and chemistry of the particles. The code is one-way coupled to a CFD code that models …