Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

The Effects Of Engineering Summer Camps On Middle And High School Students’ Engineering Interest And Identity Formation: A Multi-Methods Study, Timothy Robinson, Adam Kirn, Jenny Amos, Indira Chatterjee Nov 2023

The Effects Of Engineering Summer Camps On Middle And High School Students’ Engineering Interest And Identity Formation: A Multi-Methods Study, Timothy Robinson, Adam Kirn, Jenny Amos, Indira Chatterjee

Journal of Pre-College Engineering Education Research (J-PEER)

This multi-methods study explores changes in engineering interest and identity of middle and high school students (n = 79) attending introductory-level engineering summer camps at a large western land grant university. Middle school is a critical time when student interest, identity, and subsequently career choice begin to emerge and hence it is important that at this age students are given accurate information about engineering majors in college and future career opportunities in engineering. Data were collected over a period of two years in six summer camps. Three separate populations of middle and high school students participated in the summer …


Comparative Evaluation Of Investigation Methods For Estimating The Load-Dependent State Of Charge And End Of Discharge Of A Multirotor Uav Battery, Hanna Dibbern, Morten Roßberg, Claudia Werner Nov 2023

Comparative Evaluation Of Investigation Methods For Estimating The Load-Dependent State Of Charge And End Of Discharge Of A Multirotor Uav Battery, Hanna Dibbern, Morten Roßberg, Claudia Werner

Journal of Aviation Technology and Engineering

As the scope of multirotor unmanned aerial vehicle (UAV) applications increases, more attention is being paid to UAV energy requirements, which vary depending on the mission profile. To obtain accurate information about the UAV battery during flight, the idea of a digital twin including a battery state estimation model is promising. For battery state estimation, a Kalman filter combination is the preferred approach in the literature. Comparing different Kalman filters, the unscented Kalman filter has a more accurate estimation for nonlinear systems compared to the extended Kalman filter. In the application of UAV flight with load-dependent flight missions, the comparison …


Impact Of Spray Coating On The Performance Of Hydrophobic Membranes, Dominick J. Maiorano, Hamid Fattahijuybari, David Warsinger Aug 2022

Impact Of Spray Coating On The Performance Of Hydrophobic Membranes, Dominick J. Maiorano, Hamid Fattahijuybari, David Warsinger

Discovery Undergraduate Interdisciplinary Research Internship

Membrane distillation (MD) is a rapidly emerging water treatment technology used to combat the global water crisis. Membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are membrane fouling and an exceedance of liquid entry pressure. The development of different types of polymer membranes and the use of pretreatment have led to significant movement towards the prevention of wetting in MD. We sought to take a new approach to combat membrane wetting that involves coating these membranes with hydrophilic chemical compounds, which consequently would decrease their air permeability. Pulling data …


Introducing Concept Maps In Undergraduate Thermodynamics, Jessie Lofton Mar 2019

Introducing Concept Maps In Undergraduate Thermodynamics, Jessie Lofton

ASEE IL-IN Section Conference

Concept maps, also called mind maps, are a widely utilized educational tool. While numerous studies cite the benefits of concept mapping as a tool for student learning, the use of concept maps is more common in non-engineering disciplines. This study examines student perceptions and academic performance in an undergraduate, introductory Thermodynamics course for students majoring in Mechanical Engineering. The pedagogical approach includes incorporating student-developed concept maps, as well as an interactive study tool for First Law analysis. Qualitative and quantitative results are presented. Results are limited to a single institution and a small sample size of students. Future work will …


Use Of Penetrating Asphalt Emulsions To Address High-Void Pavement Areas, Andrew Eicher, Curt Higginbotham Mar 2019

Use Of Penetrating Asphalt Emulsions To Address High-Void Pavement Areas, Andrew Eicher, Curt Higginbotham

Purdue Road School

Longitudinal joints are high in air voids due to compaction limitations. Lowering the void content of these areas improves the durability of the pavement. Project data indicate that rapid penetrating emulsion (RPE) fills the voids beneath the surface of the pavement, reducing air and water intrusion while maintaining surface texture, whereas traditional emulsions seal the surface only. Lab tests have been developed to quantify the penetrating ability of an emulsion and resistance to water exposure. Join us for a discussion.


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan Aug 2017

Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phonons represent the quantization of lattice vibration, responsible for heat transfer in semiconductors and dielectrics. Phonon heat conduction across interfaces is crucially important for the thermal management of real-life devices such as smartphones, electric vehicles, and satellites. Although recent studies have broadly investigated spectral phonon contribution to lattice thermal conductivity, the mechanism of phonon modal transport across interfaces is still not well-understood. Previous models, including the acoustic mismatch model (AMM) and diffuse mismatch model (DMM), only consider elastic process while neglecting inelastic phonon contributions. Herein, we employ spectral Non-Equilibrium Molecular Dynamics Simulation (NEMD) to probe the temperature and heat flux …


Fundamental Studies Of Flame Propagation In Lean-Burn Natural Gas Engines, Zhiyan Wang Dec 2016

Fundamental Studies Of Flame Propagation In Lean-Burn Natural Gas Engines, Zhiyan Wang

Open Access Dissertations

Lean-burn natural gas engines offer enhanced thermal efficiencies and reduced soot and NOx emissions. However, cycle-to-cycle variability in combustion that can result from unreliable ignition, variability in equivalence ratio and quenching is a challenge. Reliability of ignition can be improved by employing a dual-fuel ignition strategy in which a small quantity of diesel fuel is injected to initiate ignition. Computational studies of n-heptane/methane-air mixing layers are performed to provide insight into the fundamental physics of dual-fuel ignition. The results show that the characteristic time required for steady premixed flame propagation has three components: time for autoignition to occur, time for …


Numerical Simulation On The Combustion Characteristic Of Iron Ore Sintering With Flue Gas Recirculation, Gan Wang, Zhi Wen, Guofeng Lou, Ruifeng Dou, Xunliang Liu, Fuyong Su, Sizong Zhang Oct 2016

Numerical Simulation On The Combustion Characteristic Of Iron Ore Sintering With Flue Gas Recirculation, Gan Wang, Zhi Wen, Guofeng Lou, Ruifeng Dou, Xunliang Liu, Fuyong Su, Sizong Zhang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd Aug 2014

The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gasification of biomass has the potential to provide a carbon-negative source of liquid fuels. The current limited use of gasification is due in part to the high temperatures necessary to achieve high conversion levels. These temperatures can be lowered by the use of catalysts, but the mechanisms by which catalysts affect the reaction rate are not fully understood. Here, the structural component of potassium carbonate’s role in the gasification process was examined. Samples of pinewood sawdust were impregnated with potassium carbonate, then pyrolyzed with N2 in a fixed bed reactor at 750°C (heater thermocouple reading). Half of the char was …


Advanced Visualization Techniques Of Hot-Jet Combustion Of Lean And Ultra-Lean Substances, Timothy I. Machin, Li Qiao Oct 2013

Advanced Visualization Techniques Of Hot-Jet Combustion Of Lean And Ultra-Lean Substances, Timothy I. Machin, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

Research has been conducted on ignition of natural gas as a potential replacement for fossil fuels. A reason natural gas is not widely used and adapted is because of the harmful emissions created when combusted in rich mixtures, but if the gas can be burned at a lean or ultra-lean equivalence ratio, these emissions can be reduced or even eliminated. One method of burning lean and ultra-lean substances is by use of hot-jet ignition. This method ignites the substance near its combustion temperature, reducing the harmful emissions. This method is not yet fully understood, and so research must be done …


Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi Oct 2013

Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the search to improve solar cells, scientists are exploring new materials that will provide better current transfer. One material that has emerged as a strong contender is the single walled carbon nanotube (SWNT). Current DNA-SWNT based films combined with chromophores have poor operational lifetimes compared to commercial solar cells. Once exposed to light the chromophore begins to degrade, eventually rendering the solar cell unusable. To solve this problem, we used a method involving multiple steps. First we found which DNA sequences formed structures around the SWNT that could hold the most chromophores by using a spectrophotometer to test the …


Experimental Study Of Co2 Recycling Using Metal-Oxide Enhanced Coconut Char Gasification: Catalytic Effect Of Potassium Carbonate On Gasification, Mengqi Gao, Indraneel Sircar, Jay P. Gore Oct 2013

Experimental Study Of Co2 Recycling Using Metal-Oxide Enhanced Coconut Char Gasification: Catalytic Effect Of Potassium Carbonate On Gasification, Mengqi Gao, Indraneel Sircar, Jay P. Gore

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biomass gasification is an important process in the production of bio-derived fuels and renewable energy. Biomass gasification with CO2 is an endothermic process requiring high temperatures, resulting in low process-efficiency. Metals found in the ash in biomass feedstock have shown rate-promoting effects on the C-CO2 reaction and have motivated the study of low-temperature catalytic gasification. The present study investigates the catalytic effects of potassium (K) on the biomass gasification reactivity of a coconut-derived char (>99.9% carbon) within the temperature range of 600 – 1000 oC. A wet-impregnation technique is used to prepare K-treated chars. Gasification of …