Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Michigan Technological University

Michigan Tech Publications

Series

Department of Mechanical Engineering-Engineering Mechanics

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Comparative Analysis Of Injection Of Pyrolysis Oil From Plastics And Gasoline Into The Engine Cylinder And Atomization By A Direct High-Pressure Injector, Magdalena Szwaja, Jeffrey Naber, David Shonnard, Daniel G. Kulas, Ali Zolghadr, Stanislaw Szwaja Dec 2022

Comparative Analysis Of Injection Of Pyrolysis Oil From Plastics And Gasoline Into The Engine Cylinder And Atomization By A Direct High-Pressure Injector, Magdalena Szwaja, Jeffrey Naber, David Shonnard, Daniel G. Kulas, Ali Zolghadr, Stanislaw Szwaja

Michigan Tech Publications

The article discusses the results of experimental studies on the course of pyrolysis oil injection through the high-pressure injector of a direct-injection engine. The pyrolysis oil used for the tests was derived from waste plastics (mainly high-density polyethylene—HDPE). This oil was then distilled. The article also describes the production technology of this pyrolysis oil on a laboratory scale. It presents the results of the chemical composition of the raw pyrolysis oil and the oil after the distillation process using GC-MS analysis. Fuel injection tests were carried out for the distilled pyrolysis oil and a 91 RON gasoline in order to …


Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru Sep 2022

Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru

Michigan Tech Publications

To enable the design and development of the next generation of high-performance composite materials, there is a need to establish improved computational simulation protocols for accurate and efficient prediction of physical, mechanical, and thermal properties of thermoset resins. This is especially true for the prediction of glass transition temperature (Tg), as there are many discrepancies in the literature regarding simulation protocols and the use of cooling rate correction factors for predicting values using molecular dynamics (MD) simulation. The objectives of this study are to demonstrate accurate prediction the Tg with MD without the use of cooling rate correction factors and …


Mechanical Properties And Characterization Of Epoxy Composites Containing Highly Entangled As-Received And Acid Treated Carbon Nanotubes, Aaron Krieg, Julia A. King, Gregory M. Odegard, Timothy Leftwich, Leif K. Odegard, Paul D. Fraley, Ibrahim Miskioglu, Claire Jolowsky, Matthew Lundblad, Jin Gyu Park, Richard Liang Sep 2021

Mechanical Properties And Characterization Of Epoxy Composites Containing Highly Entangled As-Received And Acid Treated Carbon Nanotubes, Aaron Krieg, Julia A. King, Gregory M. Odegard, Timothy Leftwich, Leif K. Odegard, Paul D. Fraley, Ibrahim Miskioglu, Claire Jolowsky, Matthew Lundblad, Jin Gyu Park, Richard Liang

Michigan Tech Publications

Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entan-gled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-re-ceived and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy …