Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 18 of 18

Full-Text Articles in Mechanical Engineering

Synthesis And Characterization Of Hybrid Catalysts For Fischer-Tropsch Jet Fuel Production, Jack M. Steinagel Dec 2022

Synthesis And Characterization Of Hybrid Catalysts For Fischer-Tropsch Jet Fuel Production, Jack M. Steinagel

Honors College Theses

Climate change is a major issue that our world is facing today. Finding renewable options for current infrastructure is paramount to solving this issue. Fischer-Tropsch synthesis of syngas from gasified biomass can produce renewable fuels that can be used in current conventional combustion engines. In order to make this process more industrially viable, a higher selectivity towards the desired range of liquid hydrocarbon products must be achieved. A novel way to do this is to introduce a catalyst to the Fischer-Tropsch reaction. The catalyst’s physical and chemical properties can promote chain growth of specific hydrocarbons. For the purpose of this …


Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu May 2022

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu

Doctoral Dissertations

A worldwide increase in energy demand and a latent crisis in the fossil fuel supply have spurred broad research in the renewable energy. Currently, most renewable energy resources (e.g., hydro, wind, solar, tide) face supply challenges as they are known to be intermittent, unstable, and locally shackled, which calls for urgent development in energy storage and conversion. Hydrogen is regarded as an ideal energy carrier with its advantages (e.g., high energy density, environmentally friendliness, and low weight). In practice, the proton exchange membrane electrolyzer cell (PEMEC) is considered to be one of the optimal hydrogen production and energy storage devices …


Economic Feasibility Of A Methanol To Dimethyl Ether Production Process To Avoid Contract Failure Shortfalls From The Covid-19 Pandemic, Jacob Noll, Robert Wasson, Harrison Mckinnis May 2021

Economic Feasibility Of A Methanol To Dimethyl Ether Production Process To Avoid Contract Failure Shortfalls From The Covid-19 Pandemic, Jacob Noll, Robert Wasson, Harrison Mckinnis

Honors Theses

Our team entered the 2021 AVEVA Academic Competition, where teams of undergraduate senior chemical engineering students competed across the country. The competition was composed of two parts: the base case design and the optimization of a chemical process. As part of the competition, our team is acting as the Engineering team for a fictional company that has given us this project. Due to COVID-19, our methanol producing company has lost a contract with a customer, leaving 23,000 tonnes/yr of unclaimed methanol. We have two choices with this methanol: either sell the methanol on the market at the spot price for …


Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter Jan 2021

Dry Reforming Of Methane Using Microwave Irradiated Metal Oxide/Coal Char Catalysts, Anthony Carter

Graduate Theses, Dissertations, and Problem Reports

This research focuses on the synthesis of both shaped and amorphous powder materials, the combination of these materials with dried Powder River Basin (PRB) coal char, and their reactionary properties with methane and carbon dioxide gasses with conventional and microwave (MW) heating. The first goal of this project was to synthesize shaped micro and nano sized particles with ideal dielectric properties for converting electromagnetic energy into heat and proven capabilities of activating methane. These particles were synthesized via solvothermal, hydrothermal, and co-preceptory treatments alone and onto the surface of dried PRB coal char. PRB is a sub-bituminous, low-ranking coal (LRC) …


Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash Aug 2020

Thermal Control Development Of A Proton Exchange Membrane Fuel Cell System, Ola Mohammed Taha Al-Shalash

Mechanical Engineering Theses

A fuel cell is an electrochemical energy conversion device that uses fuel to generate electricity. It basically converts the chemical energy of reactants directly into electricity without combustion. In a Proton Exchange Membrane Fuel Cell (PEMFC), the reactants, hydrogen and oxygen, are fed into the two electrodes, anode and cathode, respectively. A reaction takes place at each electrode and produces electricity, as well as water, and heat as the by-products. In order to maximize performance of a fuel cell, many factors can be considered for tuning and control. Temperature management is one of these factors.

A thermal-fluid model of a …


Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan Jan 2019

Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan

Williams Honors College, Honors Research Projects

In this study, two solid composite rocket propellants were designed utilizing ProPEP, a rocket propellant formulation software common in the amateur and hobby rocketry communities. The two propellants were designed to optimize specific impulse relative to a literature propellant designed by 1020 Research Labs. The literature propellant was also tested in order to validate the design of experiment as well as the mixing and testing procedures. All three propellants, which includes the literature propellant RCS-P, and the two novel propellants AKR-P1 and AKR-P2 were characterized with static tests. The results of the static tests provide data on propellant performance and …


Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro Jan 2019

Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro

UNF Graduate Theses and Dissertations

The subject of this study is the effect of in-cylinder selective non-catalytic reduction (SNCR) of NOx emissions in diesel exhaust gas by means of direct injection of aqueous urea ((NH2)2CO) into the combustion chamber. A single cylinder diesel test engine was modified to accept an electronically controlled secondary common rail injection system to deliver the aqueous urea directly into the cylinder during engine operation.

Direct in-cylinder injection was chosen in order to ensure precise delivery of the reducing agent without the risk of any premature reactions taking place. Unlike direct in-cylinder injection of neat water, …


Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez Jan 2019

Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez

Dissertations, Master's Theses and Master's Reports

The increasing amount of plastic waste (PW) generation has become an important concern due to the leveled-off recycling rates. Therefore, governmental agencies around the world, including state governments in the United States, have proposed initiatives to minimize the amount of PW that is landfilled and encourage recycling or energy recovery. Circular economy is a strategy that attempts on reusing PW to produce new polymers while avoiding its disposal and the use of virgin material. Chemical recycling raises an interesting technology prospect due to the potential reduction of pollutant emissions and the establishment of a circular economy through the production of …


Increased Energy Yield Through Fast Pyrolysis: Empowering Malawian Villages, Diehl Mutamba Jun 2018

Increased Energy Yield Through Fast Pyrolysis: Empowering Malawian Villages, Diehl Mutamba

Undergraduate Honors Theses

Biomass contributes to several renewable energy technologies. This project will explore the use of fast pyrolysis to produce fuels by designing an apparatus for fast pyrolysis. Malawian people harvest firewood from the forests, which is a major contributor to deforestation. Furthermore, they convert some of it to charcoal with about 10-15% efficiency to sell to city dwellers. The project will enable herbaceous fuels to replace wood, increase charcoal yields and create new products. Firewood and charcoal produce smoke and carbon monoxide (CO) that compromises the villagers’ health.

This project will address deforestation problems, improve sustainability, decrease health hazards and improve …


NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes Jan 2018

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes

Theses and Dissertations--Mechanical Engineering

This study explores the reactions and related species of NOx pollutants in methane flames in order to understand their production and consumption during the combustion process. To do this, several analytical simulations were run to explore the behavior of nitrogen species in the pre-flame, post- flame, and reaction layer regions. The results were then analyzed in order to identify all "steady-state" species in the flame as well as the determine all the unnecessary reactions and species that are not required to meet a defined accuracy. The reductions were then applied and proven to be viable.


Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki Dec 2016

Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki

Doctoral Dissertations

The realization of redox flow batteries (RFBs) as a grid-scale energy solution depends on improving the performance and lifetime of the technology to decrease the high capital costs. The electrodes are a key component in the RFB; performance enhancement is often achieved through chemical or thermal treatments of commercially available porous carbon materials.

This dissertation uses impedance spectroscopy-based methods to gain insight into performance and durability in RFBs, enabling intelligent cell design. Initial work focused on understanding the impact of improved electrode and membrane properties on system performance. An accelerated stress test was then developed that can be used to …


Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley Dec 2016

Effects Of Ultrasonic Transducers On Heat Transfer In Packed Particle Beds, David Patrick Moseley

Masters Theses

The objective of this study was to determine the effects of ultrasonic transducers on heat transfer in a packed particle bed heat exchanger. Although substantial research has been devoted to ultrasound, and the associated improvements in heat transfer, data regarding the effects on packed particle beds is non-existent. This is of particular interest given the potential to improve heat transfer in a wide variety of packed particle bed systems. A 42.9% increase in the heat transfer rate was demonstrated as the result of improved fluid convection throughout the packed particle bed. Secondary effects, including acoustic cavitation, acoustic streaming and local …


Micro Debris Generator, Gordan Bradaric, Ross Byers, Stephen Quanci Jun 2016

Micro Debris Generator, Gordan Bradaric, Ross Byers, Stephen Quanci

Mechanical Engineering

This senior project team at Cal Poly consisting of Stephen Quanci, Gordan Bradaric, and Ross Byers has been commissioned by Erik Brown of Lawrence Livermore National Labs to create a way to reliably and consistently entrain microscopic particles into the hot HTTU flow. These particles will be used to compare the loading rates of new HEPA filters by measuring the pressure drop across the filter. The generated particles would simulate typical conditions in which these HEPA filters are expected to operate, namely fine ash. The particles used for loading the filter are intended to simulate the particulate reaching the LLNL …


Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou Dec 2015

Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou

Doctoral Dissertations

This doctoral dissertation introduces the research in the computational modeling and simulation for the microbial fuel cell (MFC) system which is a bio-electrochemical system that drives a current by using bacteria and mimicking bacterial interactions found in nature. The numerical methods, research approaches and simulation comparison with the experiments in the microbial fuel cells are described; the analysis and evaluation for the model methods and results that I have achieved are presented in this dissertation.

The development of the renewable energy has been a hot topic, and scientists have been focusing on the microbial fuel cell, which is an environmentally-friendly …


Numerical Simulation Of Catalytic Ozone Decomposition Reaction In A Gas-Solids Circulating Fluidized Bed Riser, Lei Kong Aug 2012

Numerical Simulation Of Catalytic Ozone Decomposition Reaction In A Gas-Solids Circulating Fluidized Bed Riser, Lei Kong

Electronic Thesis and Dissertation Repository

Computational fluid dynamics (CFD) modeling of catalytic ozone decomposition reaction in a circulating fluidized bed (CFB) riser using iron impregnated FCC particles as catalyst is carried out. The catalytic reaction is defined as a one-step reaction with an empirical coefficient. Eularian-Eularian method with kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The simulation results are compared with experimental data, with the reaction rate modified using an empirical coefficient to provide better simulation results than the original reaction rate. Moreover, the particle size has great effects on the reaction rate. Studies on …


Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman Sep 2011

Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman

Master's Theses

Solid oxide fuel cells (SOFC) have gained a great deal of interest, due to their potential for high efficiency power generation and ability to utilize hydrogen fuel, as well as various hydrocarbon-based fuels. A recent trend in SOFC development has been towards lower operating temperatures (500-700°C), which can substantially reduce the cost and complexity of the system. This thesis presents an investigation into state of the art Ba- and La- based cathode materials for use in low temperature (500-700°C) solid oxide fuel cells.

Synthesis of A-site deficient [A=0.97] Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) was …


Applied Control Strategies At A Cogeneration Plant, Joseph William Burns Jun 2011

Applied Control Strategies At A Cogeneration Plant, Joseph William Burns

Master's Theses

The purpose of this paper is to demonstrate the effectiveness of “classical strategies for dynamic control” on authentic cogeneration processes. These strategies are applied to several processes at the University of Connecticut’s cogeneration plant. Case studies of their applications are presented in this paper. Strategies that are applied include the following:

1) The classical SISO feedback structure

2) The First Order Plus Dead Time (FOPDT) process model

3) The Internal Model Control (IMC) correlations for PI controller tuning

4) Static feed forward with feedback trim

5) Cascade Control


Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue Aug 2002

Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue

UNLV Theses, Dissertations, Professional Papers, and Capstones

Niobium Cavities are important parts of the integrated NC/SC high-power linear accelerator (linac) that can accelerate over 100 mA of protons to several GeV. Surface finish of the niobium cavity plays an important role of achieving the best performance of niobium cavity. The chemical etching techniques have been widely used.

Chemical etching of the inner surface of the cavity is achieved by circulating acid through it. The acid interacts with the surface and eliminates imperfections. During the etching process, a pipe with baffles is inserted within the cavity to direct the flow along the surfaces.

A 2-D, axisymmetric, steady state, …