Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Finite element analysis

2014

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji Dec 2014

On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji

Electronic Thesis and Dissertation Repository

Mechanical vibration as a way of transmitting energy has been an interesting subject to study. While cyclic oscillation is usually associated with fatigue effect, and hence a detrimental factor in failure of structures and machineries, by controlled transmission of vibration, energy can be transferred from the source to the target. In this thesis, the application of such mechanical vibration in a few surgical procedures is demonstrated.

Three challenges associated with lung cancer diagnosis and treatment are chosen for this purpose, namely, Motion Compensation, tumor targeting in lung Needle Insertion and Soft Tissue Dissection:

  1. A robotic solution is proposed for compensating ...


Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume Jan 2014

Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume

Masters Theses

An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used ...