Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Series

2012

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet Dec 2012

Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on …


Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera Jul 2012

Propagation Of Ultrasound Through Freshly Excised Human Calvarium, Armando Garcia Noguera

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The propagation of ultrasound through complex biological media, such as the human calvarium, poses a great challenge for modern medicine. Several ultrasonic techniques commonly used for treatment and diagnosis in most of the human body are still difficult to apply to the human brain, in part, because of the properties of the skull. Moreover, an understanding of the biomechanics of transcranial ultrasound may provide needed insight into the problem of blast wave induced traumatic brain injury (TBI). In the present study, the spatial variability of ultrasonic properties was evaluated for relevant frequencies of 0.5, 1, and 2.25 MHz. A total …