Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Development Of Portable Hyperspectral Imaging Device, Chenxi Li, Youngkee Jung, Iyll-Joon Doh, Euiwon Bae Aug 2017

Development Of Portable Hyperspectral Imaging Device, Chenxi Li, Youngkee Jung, Iyll-Joon Doh, Euiwon Bae

The Summer Undergraduate Research Fellowship (SURF) Symposium

Most of the conventional hyperspectral imaging devices require sophisticated optical components, occupy a large footprint, and requires an initial capital investment for laboratories which mostly suits for laboratories benchtop system. The requirement of shipping the sample and waiting an extended period of time to get the results are the main downsides of this traditional approach. Capitalize in many specific field applications and diagnosis, portable devices provide both convenience and on-site results which are desirable for government agencies and food safety inspectors. This project was aimed to develop a low-cost, portable hyperspectral device for food safety applications. A smartphone was used …


Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan Aug 2017

Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacterial biofilms are known to cause millions of dollars in damage in the medical industry per year via infection of central venous catheters, urinary catheters, and mechanical heart valves. Unfortunately, there are some characteristics of biofilm formation that are yet to be fully understood. Recently much work has been done to investigate the motility characteristics of bacteria with hopes of better understanding the phenomena of biofilm formation. Still, one of the least understood stages is bacterial attachment or adhesion, a process designed to anchor bacteria in an advantageous environment. Providing a better understanding of bacterial motility near solid interfaces will …


Intrinsic Regulators Of Actomyosin Contractility Engendering Pulsatile Behaviors, Qilin Yu, Jing Li, Taeyoon Kim Aug 2017

Intrinsic Regulators Of Actomyosin Contractility Engendering Pulsatile Behaviors, Qilin Yu, Jing Li, Taeyoon Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

Actomyosin contractility regulates various biological processes including cell migration, muscle contraction, and tissue morphogenesis. Cell cortex underlying a membrane, which is a representative actomyosin network in eukaryote cells, exhibits dynamic contractile behaviors. Interestingly, the cell cortex shows reversible aggregation of actin and myosin called pulsatile contraction in diverse cellular phenomena, such as embryogenesis and tissue morphogenesis. While contractile behaviors have been studied in several in vitro experiments and computational studies, none of them demonstrated the pulsatile contraction of actomyosin networks observed in vivo. Here, we used an agent-based computational model based on Brownian dynamics to identify factors facilitating the pulsatile …


Smartphone-Based Microscope For Pathogen Detection, Meghan E. Henderson, Katherine N. Clayton, Ryan M. Preston, Jacqueline Linnes, Tamara L. Kinzer-Ursem Aug 2017

Smartphone-Based Microscope For Pathogen Detection, Meghan E. Henderson, Katherine N. Clayton, Ryan M. Preston, Jacqueline Linnes, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

Vibrio cholerae is a water and food borne bacteria that causes cholera, a severe acute diarrheal disease, when ingested and when left untreated, can cause patient death within hours. Currently there is a lack of both sensitive and rapid portable detection technologies of V. cholerae for testing water and food samples. Combining nucleic acid amplification and particle diffusometry present an alternative detection method for V. cholerae in under 30 minutes, but the process requires an expensive laboratory microscope. In this work, we develop a smartphone-based microscope to detect V. cholerae DNA in environmental water samples using particle diffusometry. A modular …


A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza Aug 2017

A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza

The Summer Undergraduate Research Fellowship (SURF) Symposium

In modern day plastic and reconstructive surgeries numerous skin flap designs have been developed and are used to close open wounds. Skin flaps are developed with the intention of imposing minimal tension in skin closure. Excessive tension can lead to poor blood flow that result in post-surgery complications such as necrosis. Currently there is no standard in choosing a skin flap design and a surgeon's choice is based personal experience. A comparison of the mechanical loading in these various designs has not yet been done. We have developed a parametric study, using finite element analysis, of two advancement skin flaps …


An Electrochemical Analysis Of Fretting Corrosion In Metal-On-Metal Hip Implants Subjected To High Impaction Loads, Joe Morin, Timothy L. Norman, Thomas K. Fehring Apr 2017

An Electrochemical Analysis Of Fretting Corrosion In Metal-On-Metal Hip Implants Subjected To High Impaction Loads, Joe Morin, Timothy L. Norman, Thomas K. Fehring

The Research and Scholarship Symposium (2013-2019)

The metal-on-metal total hip arthroplasty, a procedure where the hip joint is replaced by a femoral prosthesis with a metal femoral head and a metal socket, has been a popular option for patients requiring a hip joint replacement. Metal on metal hip implants have been a successful implant design until recently where there has been an increased number of failures of this type of implant due to fretting corrosion, believed to be caused from the use of large femoral heads. Fretting corrosion in hip implants results from cyclic micromotion at the taper-trunnion interface; this interface motion removes the protective oxidation …


3d Printing Of Biodegradable Scaffolds For Tissue Engineering Applications, Joe Morin, Michael Pickett, Amy Abraham, Tiera Martinelli Apr 2017

3d Printing Of Biodegradable Scaffolds For Tissue Engineering Applications, Joe Morin, Michael Pickett, Amy Abraham, Tiera Martinelli

The Research and Scholarship Symposium (2013-2019)

With the recent improvements in three dimensional (3D) printing technologies, the potential for tissue engineering and regenerative medicine have significantly improved. One key idea in tissue engineering is to specifically design scaffolds to aid in the healing process by being incorporated into the body’s own tissue. The overall goal of this project is to investigate 3D printable scaffold design to access suitability for tissue replacement. This was accomplished by analyzing the effect of the material used to create the scaffolds, pore size, and pore shape on mechanical stiffness and cell culturability. Based on published literature, it was determined that, depending …


Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden Feb 2017

Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

Application of carbon nanotube coatings to computer keyboards in order to reduce the spread of bacteria in hospitals and homes.

Keywords: carbon nanotube, bacteria, antimicrobial, keyboard, design, MRSA, biofilm


Soft-Tissue Artifact Compensation For Electromagnetic Motion Capture, George T. Dickinson, Steven K. Charles Feb 2017

Soft-Tissue Artifact Compensation For Electromagnetic Motion Capture, George T. Dickinson, Steven K. Charles

Biomedical Engineering Western Regional Conference

This purpose of this study is to develop a soft-tissue artifact compensation algorithm for the upper arm using electromagnetic motion capture systems that can be implemented in a wide range of applications. This study focuses on compensation of humeral axial rotation and forearm axial rotation.


A Nanocomposite Sensor Neck Sleeve For Tracking In Vivo Spine Kinematics In The Alpaca, Colton Porter Graham, Anton Bowden Feb 2017

A Nanocomposite Sensor Neck Sleeve For Tracking In Vivo Spine Kinematics In The Alpaca, Colton Porter Graham, Anton Bowden

Biomedical Engineering Western Regional Conference

Chronic low back pain in the US is often attributed to intervertebral disc degeneration. Camelids, particularly alpacas, pose a potential model for spinal treatment due to similarity of the spinal structure and vertical loading. Alpacas also exhibit a high rate of natural disc degeneration. To gain more understanding about how disc degeneration is caused in alpacas it is necessary to understand the loading and motion of the alpaca cervical spine. The goal of the present work was to incorporate nanocomposite sensors into a custom-designed neck sleeve to track the daily in-vivo neck motion of an alpaca in its natural environment.


Portable, Powerless Automation Of Valve Actuation For Microfluidic Large-Scale Integration Technology, Andrew Schmidt Mr., Matt Fitzgerald Mr., Emre Araci Mr., Connor Mcloughlin Mr. Feb 2017

Portable, Powerless Automation Of Valve Actuation For Microfluidic Large-Scale Integration Technology, Andrew Schmidt Mr., Matt Fitzgerald Mr., Emre Araci Mr., Connor Mcloughlin Mr.

Biomedical Engineering Western Regional Conference

Portable, powerless automation of valve actuation for microfluidic large-scale integration technology