Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Optimal Inertial Sensor Placement And Motion Detection For Epileptic Seizure Patient Monitoring, Babak Kamalizonouzi Dec 2012

Optimal Inertial Sensor Placement And Motion Detection For Epileptic Seizure Patient Monitoring, Babak Kamalizonouzi

Electronic Thesis and Dissertation Repository

Use of inertial sensory systems to monitor and detect seizure episodes in patients suffering from epilepsy is investigated via numerical simulations and experiments. Numerical simulations employ a mathematical model that is able to predict human body dynamic responses during a typical epileptic seizure. An optimized inertial sensor placement procedure is developed to address achievement of highest possible sensing resolution in determining angular accelerations with minimal errors. In addition, a joint torque estimation procedure is formulated to assist in the future development of a possible detection scheme. Experimental motion data obtained from an epileptic seizure patient as well as a healthy …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Investigation Of In-Vivo Hindfoot And Orthotic Interactions Using Bi-Planar X-Ray Fluoroscopy, Kristen M. Bushey Jun 2012

Investigation Of In-Vivo Hindfoot And Orthotic Interactions Using Bi-Planar X-Ray Fluoroscopy, Kristen M. Bushey

Electronic Thesis and Dissertation Repository

A markerless RSA method was used to determine the effect of orthotics on the normal, pes planus and pes cavus populations. Computed tomography (CT) was used to create bone models that were imported into the virtual environment. Joint coordinate systems were developed to measure kinematic changes in the hindfoot during weight-bearing gait and quiet standing. The objectives of this thesis were to (1) implement a fluoroscopy-based markerless RSA system on the foot, (2) determine the effect of various orthotics at midstance of fully weight-bearing dynamic gait, and (3) determine the effect of orthotics as measured using three different techniques. Every …