Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Devices and Instrumentation

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 120

Full-Text Articles in Mechanical Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony May 2024

Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony

Mechanical Engineering Theses

As modern medicine has improved, the average age of patients has increased. This has cause a growing number of patients to develop disabilities over time due to spinal cord injuries and stroke among other neurological ailments. This has led to an increased interest in developing robotic exoskeletons to help patients with neuromuscular rehabilitation. However, most exoskeletons do not accurately replicate the natural human gait kinematics due to a lack of degrees of freedom at the designed knee joint. In this thesis, the leg assembly for a robotic rehabilitation (RoboREHAB) device is redesigned to improve the gait kinematics and a reinforcement …


The Development And Enhancement Of A Forward Mathematical Model Of The Human Knee Joint, Seth Coomer May 2024

The Development And Enhancement Of A Forward Mathematical Model Of The Human Knee Joint, Seth Coomer

Doctoral Dissertations

Degenerative joint disease, or osteoarthritis, is a common occurrence in the knee joint. This can often result in joint pain, decrease in range of motion, and ultimately disability. One way to counteract osteoarthritis is the incorporation of a total knee arthroplasty (TKA). TKAs replace the damaged bone and soft tissue surrounding the knee with metal and polyethylene components. Ideally this will improve the joint’s performance and reduce pain. However, there is still a number of TKA patients who remain dissatisfied. In order to investigate this, in depth research must be done on the design and performance of TKAs.

One such …


Redesign Of Robotic Walking Training Device To Involve Zero Gravity Capabilities And Daily Activities, Chad Ballard Apr 2024

Redesign Of Robotic Walking Training Device To Involve Zero Gravity Capabilities And Daily Activities, Chad Ballard

Mechanical Engineering Theses

Many patients struggle with disabilities that hinder their ability to walk. This project aimed to create a leg assembly capable of variable gravity so that it could be combined with a Robotic Walking Training Device, and lead to better rehabilitation options for patients. This was accomplished by deriving equations of joint torque, creating circuit diagrams for Arduino systems, modeling leg assemblies in CAD, and finally combining it to create a working small-scale prototype. The result of the prototype testing showed accurate movement on each joint, especially the ankle and knee segments, to create virtual zero gravity. In addition to this, …


Surgical Navigation In Image-Guided Transoral Robotic Surgery, Yuan Shi Apr 2024

Surgical Navigation In Image-Guided Transoral Robotic Surgery, Yuan Shi

Dartmouth College Ph.D Dissertations

Transoral robotic surgery (TORS) is a minimally invasive approach in treating head and neck cancers and has demonstrated improved surgical outcomes with reduced morbidity when compared to traditional open surgery. However, the lack of haptic feedback makes it more difficult to assess the tumor extent and locate critical structures (e.g., artery and nerves). In standard-of-care TORS, preoperative imaging is used as guidance; however, it becomes inaccurate intraoperatively: the patient’s neck is hyper-extended, surgical instruments are introduced, and soft tissues deform significantly. As a result, the surgeon is required to mentally predict intraoperative deformation, which can lead to bleeding complications and …


Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain Mar 2024

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain

Master's Theses

Total ankle replacement (TAR) implants are an effective option to restore the range of motion of the ankle joint for arthritic patients. An effective tool for analyzing these implants’ mechanical performance and longevity in-silico is finite element analysis (FEA). ABAQUS FEA was used to statically analyze the von Mises stress and contact pressure on the articulating surface of the bearing component in two newly installed fixed-bearing total ankle replacement implants (the Wright Medical INBONE II and the Exactech Vantage). This bearing component rotates on the talar component to induce primary ankle joint motion of plantarflexion and dorsiflexion. The stress response …


Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi Dec 2023

Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi

Electronic Theses and Dissertations

This dissertation aimed to advance knowledge of how subglottal stenosis impacts voice production physiology. An in-house fluid-structure-acoustic interaction approach based on the hydrodynamic/acoustic splitting technique was employed. This technique was rigorously verified for simulating phonation by matching the acoustic behavior to a compressible flow solver for phonation-relevant geometries. Simulations of an idealized 2D vocal tract model demonstrated the effects of supraglottal acoustic resonance on vocal fold kinematics and glottal flow waveform. Results showed that the acoustic coupling between higher harmonics and formats generated pressure oscillations, modifying vocal fold dynamics and glottal flow rate.

A major novelty was the incorporation and …


Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire Aug 2023

Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire

Electronic Theses and Dissertations

The Yang procedure is a new aortic root enlargement technique used to enlarge the aortic annulus by multiple valve sizes. The procedure prevents patient prosthesis mismatch and establishes a viable platform for future valve-in-valve implantation. This study used the Yang procedure to investigate the hemodynamics in the aortic root and bioprosthetic valve regions after aortic root enlargement. Results indicate the velocity magnitude at the sinus regions of a patient who underwent the Yang procedure was slower, indicating risks of flow stasis and thrombosis. Simulation results denote computational models can be created for optimization of surgical procedures.


Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour Jun 2023

Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour

Electronic Theses and Dissertations

Aortic stenosis impacts approximately 7% of the global population. In the past decade, the role of computational modeling has been becoming considerably important in the design of BHVs. To obtain reliable solutions in computational modeling, it is essential to consider accurate properties of bioprosthetic heart valves (BHVs), such as density and mechanical properties. Previous computational studies assumed (bovine pericardium) BP used in BHVs density was comparable to water or blood. Yet, BP is subjected to multiple treatments like fixation and anti-calcification. In Chapter 2, I measured BP density and its effect on BHV leaflet stress and strain. In the second …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


Biomechanical Knee Joint For Exoskeleton, Gabriel Ireton Ahern, Calloway Miller, Christianna Altamura, Eric Mailes Jun 2023

Biomechanical Knee Joint For Exoskeleton, Gabriel Ireton Ahern, Calloway Miller, Christianna Altamura, Eric Mailes

Mechanical Engineering

Our senior design project consisted of designing and manufacturing a biomechanically accurate, actuated knee joint to be integrated into an exoskeleton being developed by the Lower Limb Exoskeleton Assist Project (LLEAP), a part of the EMPOWER student association at Cal Poly, San Luis Obispo. As the human knee flexes and extends throughout gait motion, the center of rotation changes. Currently marketed exoskeletons have one point of rotation, which over constrains the knee and causes misalignment between the user and the suit [1]. Our goal was to mimic natural knee joint motion by changing the center or rotation, thus reducing misalignment …


Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player Jan 2023

Mechanical Design Of A Microwave Imaging Device For Breast Cancer Detection In Mri Scanners, Grace M. Player

Dartmouth College Master’s Theses

This project seeks to develop an updated version of a microwave imaging device for use in conjunction with breast MRI, improving upon existing technology and developing novel concepts for the device. It posits three primary redesign targets for updating the previous system: resizing the system height, making the device more iteration- friendly, and improving the overall manufacturability of the device by replacing custom components with commercially available alternatives. All three of these redesign targets are met in the new design, V2.0. The height is reduced by reducing antenna travel and height, embedding some components, and shortening the tank wall, resulting …


Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu Jan 2023

Design And Fabrication Of A Force-Displacement Control Mechanism For Bone-Surgical Tool Testing, Kenneth Nwagu

Electronic Theses and Dissertations

This project focuses on the design and fabrication of an experimental setup for orthopedic-tool testing, tailored for a surgical instrumentation company. The multifaceted project encompasses a literature review, conceptual design, prototyping, and rigorous testing, resulting in a versatile control system capable of assessing various orthopedic tools, including bone drills, saws, burrs, and power handpieces.

Orthopedic surgical procedures (which include cutting and/or drilling into bone) often need to be performed on bones for faster recovery. The drilling and cutting process can cause an increase in temperature at the cutting site which can cause bone necrosis. The tools also need to be …


Studying And Troubleshooting Lubricity Test On Pressure Wire X Proximal And Distal Coatings, Usama A. Khan Jan 2023

Studying And Troubleshooting Lubricity Test On Pressure Wire X Proximal And Distal Coatings, Usama A. Khan

All Graduate Theses, Dissertations, and Other Capstone Projects

Coatings of guidewires used in medical device manufacturing industry are one of the most important element aspects. It defines its efficiency to penetrate through tightest of canals and curves. Guidewires are put through controlled environment to accelerate its age and tested for its mechanical features. Pressure Wire X failed the lubricity testing after being tested by multiple operators and at alternate sites. A cause-and-effect diagram shows all potential causes of test failure. The human factor involved in the test failure was investigated through multiple Gage R&R and training records. Calibration error with the lubricity tester DL1000 was identified and solved …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Biomedical Engineering: Graduate Reports and Projects

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Master's Theses

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward Jul 2022

Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward

Electronic Thesis and Dissertation Repository

The reverse total shoulder arthroplasty (RTSA) has quickly grown to become the most commonly used shoulder arthroplasty design; however, reports have shown evidence of RTSA failures related to polyethylene wear and damage. Therefore, the present work investigated the wear of crosslinked polyethylene (XLPE) in environments similar to that of an in vivo RTSA. Additionally, a computational model was developed based on a previous study of the shoulder motions obtained from a selection of typical patients with RTSA. This model quantified the amount of glenohumeral motion that an RTSA may be subjected to in vivo and provided an approximate value for …


Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington Jun 2022

Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington

Industrial and Manufacturing Engineering

Eagle Medical Incorporated is a contract medical device packaging and sterilization company. The company purchases thermoformed medical packaging trays, which maintain the sterility of medical devices, from various manufacturers. To ensure packaging quality and to prevent cleanroom contamination, Eagle Medical inspects and sterilizes each blister tray that they order. This process is an essential non-value-added activity that creates a bottleneck. Cleanroom employees must stop packaging medical devices and attend to the processing of blister trays and packaging solutions. The blister trays arrive at Eagle’s facility in nested stacks. Vibration and movement during shipping further compresses the stacks, which makes separation …


Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre May 2022

Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: Diabetic peripheral neuropathy is one of the common complications of type-2 diabetes mellitus (DM). Changes in the intrinsic plantar tissue coupled with repetitive mechanical loads and loss of sensation may lead to foot related complications (skin break down, ulcerations, and amputations) in persons with neuropathy if left untreated. The purpose of this dissertation was to stratify individuals with pre-diabetes, diabetes with and without neuropathy using dynamic plantar pressure parameters during walking, using machine learning algorithms.Methods: Plantar pressure data was collected from one hundred participants during walking with pressure measuring insoles fixed between the feet and thin socks. Simultaneously high-definition …


Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato May 2022

Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato

UNLV Theses, Dissertations, Professional Papers, and Capstones

Machine Learning (ML) methods including Deep Learning (DL) Methods have been employed in the medical field to improve diagnosis process and patient’s prognosis outcomes. Glioblastoma multiforme is an extremely aggressive Glioma brain tumor that has a poor survival rate. Understanding the behavior of the Glioblastoma brain tumor is still uncertain and some factors are still unrecognized. In fact, the tumor behavior is important to decide a proper treatment plan and to improve a patient’s health. The aim of this dissertation is to develop a Computer-Aided-Diagnosis system (CADiag) based on ML/DL methods to automatically estimate the Overall Survival Time (OST) for …


Contact Simulation For Evaluating Patient Specific Surgical Guide Stability, Vincent Nierste Jan 2022

Contact Simulation For Evaluating Patient Specific Surgical Guide Stability, Vincent Nierste

Electronic Theses and Dissertations

This study proposes a novel computational method to quantify guide stability for Patient Specific Instrumentation (PSI) guides. A finite element contact model was used to analyze the final position of PSI guides on a femur across a range of loading parameters representing forces applied by a surgeon during operative use. Separate segmentation methods were used for the guide and bone geometry to represent differences between segmentation and actual patient geometry. The region of loading parameters over which the guide exhibited a consistent final position was measured and reported as Guide Stability Score. The model was verified using cadaver specimens for …


Numerical And Scaling Study On Application Of Inkjet Technology To Automotive Coating, Masoud Arabghahestani Dr. Jan 2022

Numerical And Scaling Study On Application Of Inkjet Technology To Automotive Coating, Masoud Arabghahestani Dr.

Theses and Dissertations--Mechanical Engineering

A thorough literature review identified lack of precision control over quality of droplets generated by the currently available industrial sprayers and a growing need for higher quality droplets in the coating industry. Particularly, lack of knowledge and understanding in continuous inkjets (CIJ) and drop-on-demand (DOD) technologies is identified as significant. Motivated by these needs, this dissertation is dedicated to computational fluid dynamics (CFD) and scaling studies to improve existing inkjet technologies and develop new designs of efficient coating with single and/or multiple piezoelectric sensors to produce on-demand droplets. This dissertation study aims at developing a new DOD type coating technology, …


Controlled Voltage Of Hot Snare Polypectomy Device In Electrosurgical Device, Saidi Olayinka Olalere Jan 2022

Controlled Voltage Of Hot Snare Polypectomy Device In Electrosurgical Device, Saidi Olayinka Olalere

Electronic Theses and Dissertations

The study is used to understand the working procedure of the Olympus PSD-30 Electrosurgical Unit which a high-frequency alternating current is to measure the voltage and power output from the unit when used for a surgical operation to determine the extent of tissue damage. The output power and voltage were as examined with the stopwatch, then with an Arduino time based for 1, 2, and 3 seconds to understand the different modes of the cut and coagulation feedback with an RCC circuit used to mimic the human body. This shows a pattern in which the feedback power increases, and voltage …


Tailoring Of The Left Ventricular Assist Device Cannula Implantation Using Coupled Multi-Scale Multi-Objective Patient Specific Optimization., Abubakar Dankano Dec 2021

Tailoring Of The Left Ventricular Assist Device Cannula Implantation Using Coupled Multi-Scale Multi-Objective Patient Specific Optimization., Abubakar Dankano

Electronic Theses and Dissertations, 2020-

Despite advancements in device design and anti-coagulation treatments, there are numerous adverse events that may occur following implantation of LVADs. The most devastating involves the embolization of thrombus into the brain causing a stroke, with incidence of up to 14-47% over a 6–12-month period. This study aims to elucidate ways to reduce this risk by surgical maneuvers guided by a multi-scale computational fluid dynamics analysis wrapped around a multi-objective shape optimization scheme which optimizes the anastomosis location of the VAD outflow graft (OG) along the ascending aorta to minimize the incidence of thrombi reaching the cerebral vessels and reduce particle …


Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak Aug 2021

Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak

Electronic Thesis and Dissertation Repository

Recent long-term follow-up studies have shown that the cervical disc arthroplasty treatment have potentials in developing surrounding heterotopic ossification (HO). While its cause requires further investigation, this thesis has hypothesized that it may be the result of the continual remodeling of the injured vertebrae caused by the prostheses with smaller footprints introducing abnormal stresses. The research objective of this thesis is to develop a new prosthesis material that can be molded into any form conforming to the size and shape of the end-plates of the affected patient vertebrae. For prototype development, a composite material consisting of 10wt% polyvinyl alcohol cryogel …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Hand Strength And Dexterity Enhancer, Julia Ann Denison, Autumn B. Rexford, Melissa A. Kurani, Christina K. Fong Jun 2021

Hand Strength And Dexterity Enhancer, Julia Ann Denison, Autumn B. Rexford, Melissa A. Kurani, Christina K. Fong

Biomedical Engineering

Good Grips created the hand strength and dexterity enhancer project to meet the challenge presented by Bill Phelps. He has Inclusion Body Myositis (IBM), an inflammatory muscle disease characterized by progressive muscle weakness and atrophy. Bill has limited strength in both hands and lost the ability to bend his fingers, making it difficult to grip anything. He needed a device that would help with everyday tasks such as writing, lifting, and holding various objects.

Our team consists of four engineering students attending Cal Poly, San Luis Obispo. We researched, designed, manufactured, and tested a device that would fulfill the problem …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang May 2021

Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang

Mechanical Engineering Research Theses and Dissertations

Microscale manipulation has very promising potential in medical applications such as drug delivery, minimal and invasion surgery. Contactless control is preferable as remote manipulation is necessary for in vivo applications. Among different control methods, magnetic power source is more suitable and robust for the applications mentioned above. Presented here is a magnetic tweezer system, which manipulates microscale magnetic particles using magnetic forces created by magnetic field gradient. The proposed system has three advantages: First, force applied by the magnetic tweezer system does not contact with the target object and can be generated in different directions. Second, the magnetic tweezer system …