Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanical Engineering

The University of Maine

Vocal fold

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi Dec 2023

Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi

Electronic Theses and Dissertations

This dissertation aimed to advance knowledge of how subglottal stenosis impacts voice production physiology. An in-house fluid-structure-acoustic interaction approach based on the hydrodynamic/acoustic splitting technique was employed. This technique was rigorously verified for simulating phonation by matching the acoustic behavior to a compressible flow solver for phonation-relevant geometries. Simulations of an idealized 2D vocal tract model demonstrated the effects of supraglottal acoustic resonance on vocal fold kinematics and glottal flow waveform. Results showed that the acoustic coupling between higher harmonics and formats generated pressure oscillations, modifying vocal fold dynamics and glottal flow rate.

A major novelty was the incorporation and …


Numerical Study Of Laryngeal Control Of Phonation Using Realistic Finite Element Models Of A Canine Larynx, Biao Geng Dec 2021

Numerical Study Of Laryngeal Control Of Phonation Using Realistic Finite Element Models Of A Canine Larynx, Biao Geng

Electronic Theses and Dissertations

While many may take it for granted, the human voice is an incredible feat. An average person can produce a great variety of voices and change voice characteristics agilely even without formal training. Last several decades of research has established that the production of voice is largely a mechanical process: i.e., the sustained vibration of the vocal folds driven by the glottal air flow. Since one only has a single pair of vocal folds, the versatility comes with the ability to change the mechanical status of the vocal folds, including vocal fold length and thickness, tension, and level of adduction, …