Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanical Engineering

PDF

California Polytechnic State University, San Luis Obispo

Finite element

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla Jun 2015

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla

Master's Theses

Osteoarthritis (OA) is a degenerative condition of articular cartilage that affects more than 25 million people in the US. Joint injuries, like anterior cruciate ligament (ACL) tears, can lead to OA due to a change in articular cartilage loading. Gait analysis combined with knee joint finite element modeling (FEM) has been used to predict the articular cartilage loading. To predict the change of articular cartilage loading during gait due to various ACL injuries, a tibiofemoral FEM was developed from magnetic resonance images (MRIs) of a 33 year male, with no prior history of knee injuries. The FEM was validated for …


Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin Dec 2013

Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin

Master's Theses

Osteoarthritis (OA) is a degenerative condition of cartilage and is the leading cost of disability in the United States. Motion analysis experiments in combination with knee-joint finite element (FE) analysis may be used to identify exercises that maintain knee-joint osteochondral (OC) loading at safe levels for patients at high-risk for knee OA, individuals with modest OC defects, or patients rehabilitating after surgical interventions. Therefore, a detailed total knee-joint FE model was developed by modifying open-source knee-joint geometries in order to predict OC tissue stress and strain during the stance phase of gait. The model was partially validated for predicting the …


Finite Element Models Of The Knee & Hip Joints: Using Opensim To Predict Muscle Forces, Kevin S. Jones, Spencer D. Wangerin, Jeffrey D. Pyle, Stephen M. Klisch, Scott J. Hazelwood Aug 2013

Finite Element Models Of The Knee & Hip Joints: Using Opensim To Predict Muscle Forces, Kevin S. Jones, Spencer D. Wangerin, Jeffrey D. Pyle, Stephen M. Klisch, Scott J. Hazelwood

STAR Program Research Presentations

Quantitative data of stresses and strains in the cartilage of the knee and hip joints are required to design prostheses and can be used to give accurate advice to patients with cartilage damage as to which activities should be avoided. Instrumented hip implants can only give the overall resultant force in the joint, not the stresses and strains throughout the cartilage. Finite Element (FE) models of the Knee and Hip are being constructed in order to obtain the stresses and strains in articular (of the joint) cartilage. Muscle forces and joint contact forces are required as inputs to these FE …