Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan Jan 2021

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan

Theses and Dissertations--Mechanical Engineering

PTFE-based materials are widely used in areas of tribology, particularly in seal and bearing applications because of their outstanding self-lubricating properties. Often in dynamic seal applications there is a need for ultra-low mechanical friction loss between the sealing surfaces. Due to its extremely low friction coefficient, there is interest in employing Polytetrafluoroethylene (PTFE) materials in such applications. One challenging aspect of employing PTFE is that these materials are viscoelastic and plastic. This dissertation concentrates on the modeling of viscoelastic material response when used as mechanical face seals with a focus on PTFE-based materials. First, the viscoelastic characteristics are measured through …


Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova Dec 2020

Numerical Simulation Of Nonlinear Vibrations Of Discrete Mass With Harmonic Force Perturbation, M. Yusupov, B. A. Akhmedov, Olga Karpova

Acta of Turin Polytechnic University in Tashkent

The problem of vibration of a single-mass system under the force excitation of vibration associated with a fixed base by a weightless nonlinear viscoelastic spring is considered. To take into account the rheological properties of the spring material, the Boltzmann-Volterra principle was used. Mathematical models of the problem under consideration are obtained, which are described by integro-differential equations. A solution method based on the use of quadrature formulas has been developed and a computer program has been compiled on its basis, the results obtained are presented in the form of graphs. The influence of nonlinear and rheological properties of a …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Development Of Material Model Subroutines For Linear And Nonlinear Response Of Elastomers, Asim Gillani Oct 2018

Development Of Material Model Subroutines For Linear And Nonlinear Response Of Elastomers, Asim Gillani

Electronic Thesis and Dissertation Repository

The nature of elastomers has been extensively studied ever since the vulcanization of rubber in the 19th century. Elastomers have been heavily employed in various fields, such as automobile, aerospace, robotics, biomimetics, dynamics and energy harvesting. Due to their molecular nature, these materials display hyperelastic and viscous response when deformed. Their response has been studied in a number of works, which tend to explain their nature through the theory of polymer dynamics or using rheological models. As elastomers are designed as actuators, generators or artificial tissues with complex geometries, the need for finite element analysis to study their response is …


Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki Jun 2018

Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki

LSU Doctoral Dissertations

A true understanding of the mechanisms behind most of the brain diseases is still out of reach. For several years, the interest of scientists has been focused on the genetic and biological causes, however, recent studies unraveled the importance of the biomechanics of the brain growth, folding, impact resistance, and deformation on its pathological conditions. While, a wide range of different methods have been used for characterization of the mechanical properties of the brain at the tissue level, the obtained results from different studies are extremely scattered and sometimes in contrast to one another. Since the brain tissue is extremely …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou Sep 2015

Electromechanical Coupling Behavior Of Dielectric Elastomer Transducers, Jianyou Zhou

Electronic Thesis and Dissertation Repository

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design …


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the …