Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics

Theses/Dissertations

2016

Institution
Keyword
Publication

Articles 1 - 30 of 38

Full-Text Articles in Mechanical Engineering

Numerical Computation Of Transient Response Of 2d Wedge Impact, Naresh Kumar Koyyapu Dec 2016

Numerical Computation Of Transient Response Of 2d Wedge Impact, Naresh Kumar Koyyapu

University of New Orleans Theses and Dissertations

The diverse applications of advanced marine craft ascribed to their high speed and technological advancements has led to the use of stronger and lighter metals in such crafts. High speed, in effect also increases slamming loads as higher speed increases frequency of wave encounter while operating in waves. The present study is limited to wedge impact models. Fundamentally, the study is thus about two-dimensional (2D) wedge impact in water. In an attempt to predict the structural response to impact hydrodynamic force, a beam element based finite element (FE) computer program is written and the results of the code are presented …


Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao Dec 2016

Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao

Open Access Theses

Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp™, which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp™, a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or …


A Sharp Interface Isogeometric Strategy For Moving Boundary Problems, Tao Song Dec 2016

A Sharp Interface Isogeometric Strategy For Moving Boundary Problems, Tao Song

Open Access Dissertations

The proposed methodology is first utilized to model stationary and propagating cracks. The crack face is enriched with the Heaviside function which captures the displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic displacement functions to reproduce the tip singularity. The enriching degrees of freedom associated with the crack tips are chosen as stress intensity factors (SIFs) such that these quantities can be directly extracted from the solution without a-posteriori integral calculation.

As a second application, the Stefan problem is modeled with a hybrid function/derivative enriched interface. Since the interface geometry is explicitly defined, normals and curvatures can be …


3-Axis Automated Probe Traverse For Aerodynamic Testing, Tananant Boonya-Ananta, Ricky Wai, Zander Oostman, Teyvon Brooks Dec 2016

3-Axis Automated Probe Traverse For Aerodynamic Testing, Tananant Boonya-Ananta, Ricky Wai, Zander Oostman, Teyvon Brooks

Mechanical Engineering

Our primary objective is to design, build, and test an automated traverse to hold measurement probes in Cal Poly’s low speed wind tunnel. The device should cause minimal flow disturbance. It’s movements must be able to cover eighty percent of the three-dimensional test section. The device should have a mounting point for interchangeable probes. The assembly is to be integrated with the current frame structure on the wind tunnel test section, and should allow very minimal deflection of the measurement probe. The user should be able to control the motion of the traverse via a computer interface which supports automatic …


Final Design Report: Polymer Fatigue Characterization Test Method, Wyatt Ayling, Tyler Price, Brandon Stell, Michela Upson Dec 2016

Final Design Report: Polymer Fatigue Characterization Test Method, Wyatt Ayling, Tyler Price, Brandon Stell, Michela Upson

Mechanical Engineering

Polylogix is a team dedicated to the design, build, and testing of a fatigue machine to simulate cyclic loading on a biomedical polymer. This project is sponsored by Endologix, Inc. to provide test data characterizing mechanical material properties of various formulations of polymer used in abdominal aortic aneurysm surgeries. With this project goal, the machine must be able to test the polymer at body conditions; these include a testing temperature of 37°C and a cycling frequency ranging from 1 Hz to 10 Hz. This report proposes the following solution to this design challenge: an AC motor-driven mechanism utilizing a planetary …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of energy-optimized …


Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder Dec 2016

Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder

Masters Theses

Wind tunnel test customers continue to push the limits by producing air vehicle designs that produce high aerodynamic loads at the desired test conditions. These loads are a combination of steady aerodynamic, unsteady aerodynamic, and inertial forces. A methodology to monitor the health of a wind tunnel strain-gage balance has been developed. The objective of this methodology is to define the stress limits of the balance and monitor these limits so the balance can be safely tested without failure of the balance. A balance failure could result in costly damage to the wind tunnel model, support system, and the wind …


Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang Sep 2016

Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang

Electronic Thesis and Dissertation Repository

The fracture toughness resistance curve, i.e. the J-integral resistance curve (J-R curve) or the crack tip opening displacement resistance (CTOD-R) curves, is widely used in the integrity assessment and strain-based design of energy pipelines with respect to planar defects (i.e. cracks). This thesis deals with issues related to the experimental determination of the J(CTOD)-R curves using the newly-developed single-edge (notched) tension (SE(T)) specimens. In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate J in a J-R curve test based on …


A Hybrid Technique Of Energy Harvesting From Mechanical Vibration And Ambient Illumination, M Shafiqur Rahman Aug 2016

A Hybrid Technique Of Energy Harvesting From Mechanical Vibration And Ambient Illumination, M Shafiqur Rahman

University of New Orleans Theses and Dissertations

Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power …


Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed Aug 2016

Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed

Theses and Dissertations

The objective of this research is to generate design maps to identify functionally graded microstructures with enhanced fracture toughness. Several Functionally Graded Materials (FGMs) with an edge crack and membrane loading are considered and the resulting J-integral values are computed numerically using Finite Element Analysis. In order to capture the resulting stress fields accurately, Barsoum elements are used in the vicinity of the crack tip and the simulations are carried out for several crack lengths (a) and material contrasts (κ). The averages of the J-integral values are used to determine the normalized Stress Intensity Factors which are then benchmarked with …


Cyclic Tensile Response Of A Polyurethane Material, Yizhou Nie Aug 2016

Cyclic Tensile Response Of A Polyurethane Material, Yizhou Nie

Open Access Theses

Polyurethane is one of the most widely used polymer materials in the world. With the increasing demand of polyurethane, its mechanical behaviors are particularly of interest. In particular, the response of the material under a quasi-static loading being subject to an impact load. To delineate the effect of rate change on the mechanical response of polyurethane, a tensile experiment was designed where the specimen is initially subjected to quasi-static tensile loading and then to high-rate cyclic tension within the same experiment. Constant strain-rate experiments at both quasi-static and high strain rates are also conducted. The analysis of the results leads …


Modeling Of Frame Structures Undergoing Large Deformations And Large Rotations, Hui Liu Aug 2016

Modeling Of Frame Structures Undergoing Large Deformations And Large Rotations, Hui Liu

Open Access Dissertations

Numerical simulation of large-scale problems in structural dynamics, such as structures subject to extreme loads, can provide useful insights into structural behavior while minimizing the need for expensive experimental testing for the same. These types of problems are highly non-linear and usually involve material damage, large deformations and sometimes even collapse of structures. Conventionally, frame structures have been modeled using beam-frame finite elements in almost all structural analysis software currently being used by researchers and the industry. However, there are certain limitations associated with this modeling approach. This research focuses on two issues, in particular, of modeling frame structures undergoing …


High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos Aug 2016

High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos

Open Access Theses

Electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituents often have large variation in their mechanical properties, making the characterization process a challenging task. In addition, the mechanical properties and mechanical behaviors of electrodes are closely coupled with the electrochemical processes of lithium insertion and extraction. There is an urgent need to develop an experimental platform to characterize the chemomechanical response of electrodes under the in-situ conditions of charge and discharge.

In the first part of this thesis, instrumented grid indentation is employed to determine the elastic modulus and hardness of the constituent phases of a composite cathode. …


Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood Jun 2016

Ultra-Light Bear Canister, Naveen Beasley, Eli Rogers, Cory Wilson, Donald Wood

Mechanical Engineering

A bear canister is the primary tool used by outdoor enthusiasts to protect their food from bears while camping or backpacking. There are many effective products currently on the market, however many are not designed with reduced weight in mind. Hardcore backpackers want to have the lightest gear possible to ease the strain of carrying a large pack for sometimes weeks at a time.

Current bear canisters exist that utilize carbon fiber for weight reduction, however they rely on stock carbon tubes and lack engineering analysis, and no competitor has a fully composite bear canister available. Our sponsor, Nick Hellewell, …


Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv Jun 2016

Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv

Master's Theses

Carbon fiber reinforced composites are utilized in many design applications where high strength, low weight, and/or high stiffness are required. While composite materials can provide high strength and stiffness-to-weight ratios, they are also more complicated to analyze due to their inhomogeneous nature. One important failure mode of composite structures is delamination. This failure mode is common when composite laminates are subject to impact loading.

Various finite element methods for analyzing delamination exist. In this research, a modeling strategy based on contact tiebreak definitions in LS-DYNA®was used. A finite element model of a low-velocity impact event was created to …


Physical Testing Of Potential Football Helmet Design Enhancements, Michael Jeremy Schuster Jun 2016

Physical Testing Of Potential Football Helmet Design Enhancements, Michael Jeremy Schuster

Master's Theses

Football is a much loved sport in the United States. Unfortunately, it is also hard on the players and puts them at very high risk of concussion. To combat this an inventor in Santa Barbara brought a new design to Cal Poly to be tested.

The design was tested in small scale first in order to make some preliminary conclusions about the design. In order to fully test the helmet design; however, full scale testing was required. In order to carry out this testing a drop tower was built based on National Operating Committee on Standards for Athletic Equipment, NOCSAE, …


Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich Jun 2016

Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich

Architectural Engineering

The Architectural Engineering major places a heavy emphasis on structural dynamics and the role of wind and seismic loading in building analysis and design. Buildings of high importance that are critical to community function, such as hospitals, often utilize supplemental damping devices like supplemental viscous fluid dampers or base isolators to reduce the overall demands on the structural system. The design and analysis of these dampers are typically not taught at the undergraduate level, and is frequently performed by mechanical engineers, in lieu of structural engineers.

To better understand and research building behavior with supplemental damping devices, our multi-disciplinary team …


Scalable Three-Dimensional Grasping Mechanism, Ikya Mamidala May 2016

Scalable Three-Dimensional Grasping Mechanism, Ikya Mamidala

Master of Technology Management Plan II Graduate Projects

In this work, we develop a scalable end-effector mechanism for grasping three- dimensional objects with sizes ranging from micrometer to millimeter scale. The design architecture of the gripper comprises an array of identical fingers patented in a circular fashion. Each finger is designed from a novel linkage mechanism whose end effector is manipulated by two independent actuators. In this research, we study three finger gripper device, where each is obtained from a 3 - linkage mechanism. The device is controlled by three independent piezo actuators, and one electro-magnetic solenoid common to each mechanism. The gripping capability depends on how fingers …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth Apr 2016

Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth

Open Access Dissertations

The effect of projectile nose geometry on ensuing wave development in high-performance yarns is explored during single yarn transverse impact. Special attention has been placed on visualizing the immediate region around the projectile-yarn contact site for 0.30-cal round, 0.30-cal fragment simulation projectiles (FSP), and razor blades using high-speed imaging. Kevlar® KM2, Dyneema®SK76 and AuTx have been impacted at velocities ranging from ∼100 m/s to ∼1200 m/s depending on projectile nose shape, with an emphasis set on determining the critical velocity wherein below said velocity significant development of wave propagation occurs and above said velocity the yarn fails immediately upon impact. …


Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath Apr 2016

Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath

Open Access Theses

Magnetic equivalent circuits (MECs) have been employed by many researchers to model the relationship between magnetic flux and current in electromagnetic systems such as electric machines, transformers and inductors [1] ,[2]. Magnetic circuits are analogous to electric circuits where voltage, current, resistance and conductance are the respective counterparts of magneto-motive force (MMF), magnetic flux, reluctance and permeance. The solution of MECs can be accomplished with the plethora of techniques developed for electrical circuit analysis. Specifically, mesh analysis, based on Kirchoff’s Voltage Law (KVL), and nodal analysis, based on Kirchoffs Current Law (KCL), are two very common solution techniques. Once an …


Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson Apr 2016

Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson

Master's Theses (2009 -)

Accurate chemical kinetic models, which predict species evolution and heat release rates in chemically reactive systems, are essential for further advancements in fuel and combustion technology. An experimental facility that is widely used for evaluating the accuracy of kinetic models is a rapid compression machine (RCM), which creates a well-defined reaction environment by compressing a reactive mixture inside a chamber. Generally, RCM experiments are conducted in order to obtain ignition delay data. However, chemical speciation data provides greater insight into reaction pathways, and is therefore a more rigorous benchmark for validating kinetic models. In order for a chemical kinetic model …


Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy Feb 2016

Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy

Electronic Thesis and Dissertation Repository

The process of development of a new robot is one of the modern technological arts. This process involves multiple complex steps and recursive approach. In this project, a solution for automatic harvesting of mushrooms is developed. In order to design an effective solution, it is necessary to explore and take into consideration the limitations of grasping very soft and fragile objects (particularly mushrooms). We will elaborate several strategies of picking and analyze each strategy to formulate the design requirements, develop a solution, and finally, evaluate the efficiency of the proposed solution in actual farm conditions for real mushrooms. The mushroom …


Orchard Bin Atv Trailer, Neil F. Leitz Jan 2016

Orchard Bin Atv Trailer, Neil F. Leitz

All Undergraduate Projects

A local orchardist was experiencing a problem that was being caused by their lack of apple picking bin moving equipment. The orchardist needed a well-engineered solution to this lack of equipment. The solution arrived at was a five bin trailer. There were multiple design requirements for this trailer, including the device needing to be able to interface with an ATV, be able to be loaded by hand, be able to carry five bins, and not exceed a budget of $750. While perfecting the design of the trailer, a number of different disciplines were utilized, which included dynamics, kinematics, static loading …


Multiple Apple Box Lift 1/10th Scale Model, Kyle J. Burlingame Jan 2016

Multiple Apple Box Lift 1/10th Scale Model, Kyle J. Burlingame

All Undergraduate Projects

Title and Author: 1/10th Scale Multiple Apple Box Lift by Kyle Burlingame (Engineering Technologies, Safety, and Construction) Abstract/Artist statement: A 1/10th scale Multiple Apple Box Lift was designed and built as a proof of concept for a full scale device. The Multiple Apple Box Lift was designed to meet a customer’s requirements and to be presented at SOURCE. This device lifts the top half of the stacked apple boxes on a pallet in order to allow access to the boxes in the middle of the stack. The device can be manually operated by two people while in-between narrow rows of …


Flag Raising Device, Josh Quintero Jan 2016

Flag Raising Device, Josh Quintero

All Undergraduate Projects

The motivation for this project stems from a lifetime of boating with father Richard Jones. One problem that many people encounter, including Richard, was when towing someone behind a boat, is the difficulty with handling the warning flag. This flag is used to show other surrounding boats that someone has fallen into the water behind their boat. This warns other boats to stay far away from that area to keep safe from running over the swimmer. Although, when holding the flag in the boat, it can be hard to see at times. The boat driver, or other people standing in …


Hydraulic Sprayer Boom Upgrade, Chad R. Omlin Jan 2016

Hydraulic Sprayer Boom Upgrade, Chad R. Omlin

All Undergraduate Projects

Title and Author: Agriculture sprayer hydraulic boom upgrade by Chad Omlin (engineering Technologies, Safety, and Construction)

Abstract: Today’s agriculture industry is all about being the most efficient with your time, land, employees, and machinery. One thing that has made farming more efficient has been the use of hydraulics. Having a sprayer unit with manual booms is not being efficient with your time and/or employees. To make the sprayer unit more efficient, hydraulic cylinders were added. Sketched solutions were analyzed using statics and mechanics of materials principles. Drawings were completed for the successful analysis solutions. Solid works software was used to …


Suspension For Electrathon Vehicle, Mackenzie Ericson Angeledes Jan 2016

Suspension For Electrathon Vehicle, Mackenzie Ericson Angeledes

All Undergraduate Projects

The purpose of this project was to develop a rear suspension system to support the frame of an Electrathon Vehicle. The vehicle is designed to compete in the Electrathon America competition on behalf of the Central Washington University Electric Vehicle Club. The suspension system was designed to use readily available parts sourced from manufacturers to keep the components serviceable. Using dynamic and static engineering analysis (spring equations, equations of equilibrium, stress calculations), the necessary custom components were designed. Space restrictions and limitations of the preexisting frame necessitated modifications, such as the straightness of the frame and the positioning of existing …