Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics

Old Dominion University

Flutter

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Finite Element Analysis And Active Control For Nonlinear Flutter Of Composite Panels Under Yawed Supersonic Flow, Khaled Abdel-Motagaly Jan 2001

Finite Element Analysis And Active Control For Nonlinear Flutter Of Composite Panels Under Yawed Supersonic Flow, Khaled Abdel-Motagaly

Mechanical & Aerospace Engineering Theses & Dissertations

A coupled structural-electrical modal finite element formulation for composite panels with integrated piezoelectric sensors and actuators is presented for nonlinear panel flutter suppression under yawed supersonic flow. The first-order shear deformation theory for laminated composite plates, the von Karman nonlinear strain-displacement relations for large deflection response, the linear piezoelectricity constitutive relations, and the first-order piston theory of aerodynamics are employed. Nonlinear equations of motion are derived using the three-node triangular MIN3 plate element. Additional electrical degrees of freedom are introduced to model piezoelectric sensors and actuators. The system equations of motion are transformed and reduced to a set of nonlinear …


Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …