Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Theoretical And Numerical Analysis Of Thermal Runaway Propagation In Li-Ion Battery Packs, Dhananjay Mishra May 2023

Theoretical And Numerical Analysis Of Thermal Runaway Propagation In Li-Ion Battery Packs, Dhananjay Mishra

Mechanical and Aerospace Engineering Dissertations

Strategies to prevent or minimize propagation of thermal runaway in a pack of Li-ion cells are critically needed to ensure safe operation, storage and transportation. While significant literature already exists on thermal runaway simulations, several key questions of practical relevance have remained unaddressed. This work presents multi-mode heat transfer simulations to predict the onset and propagation of thermal runaway in a pack of cylindrical Li-ion cells. The impact of inter-cell gap and thermal properties of the interstitial material on onset and propagation of thermal runaway is studied. It is shown that high interstitial thermal conductivity promotes thermal runaway propagation. However, …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.