Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances In Parallel Processing And Integration Of Ground Effects, Nathaniel B. Develder Jan 2014

Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances In Parallel Processing And Integration Of Ground Effects, Nathaniel B. Develder

Masters Theses 1911 - February 2014

Potential flow simulations are a great engineering type, middle-ground approach to modeling complex aerodynamic systems, but quickly become computationally unwieldy for large domains. An N-body problem with N-squared interactions to calculate, this free wake vortex model of a wind turbine is well suited to parallel computation. This thesis discusses general trends in wind turbine modeling, a potential flow model of the rotor of the NREL 5MW reference turbine, various forms of parallel computing, current GPU hardware, and the application of ground effects to the model. In the vicinity of 200,000 points, current GPU hardware was found to be nearly 17 …


Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton Jan 2009

Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton

Mechanical Engineering Faculty Works

The flowfield around a 60% scale stationary Formula 1 tire in contact with the ground in a closed wind tunnel was examined experimentally in order to assess the accuracy of different turbulence modeling techniques. The results of steady RANS and Large Eddy Simulation (LES) were compared with PIV data, which was obtained within the same project. The far wake structure behind the wheel was dominated by two strong counter-rotating vortices. The locations of the vortex cores, extracted from the LES and PIV data as well as computed using different RANS models, showed that the LES predictions are closest to the …


Intelligent Strain Sensing On A Smart Composite Wing Using Extrinsic Fabry-Perot Interferometric Sensors And Neural Networks, Kakkattukuzhy M. Isaac, Donald C. Wunsch, Steve Eugene Watkins, Rohit Dua, V. M. Eller Jan 2003

Intelligent Strain Sensing On A Smart Composite Wing Using Extrinsic Fabry-Perot Interferometric Sensors And Neural Networks, Kakkattukuzhy M. Isaac, Donald C. Wunsch, Steve Eugene Watkins, Rohit Dua, V. M. Eller

Electrical and Computer Engineering Faculty Research & Creative Works

Strain prediction at various locations on a smart composite wing can provide useful information on its aerodynamic condition. The smart wing consisted of a glass/epoxy composite beam with three extrinsic Fabry-Perot interferometric (EFPI) sensors mounted at three different locations near the wing root. Strain acting on the three sensors at different air speeds and angles-of-attack were experimentally obtained in a closed circuit wind tunnel under normal conditions of operation. A function mapping the angle of attack and air speed to the strains on the three sensors was simulated using feedforward neural networks trained using a backpropagation training algorithm. This mapping …