Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Experimental Study On The Effect Of Air Flow On Soap Bubble Formation, John M. Davidson Dec 2013

Experimental Study On The Effect Of Air Flow On Soap Bubble Formation, John M. Davidson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Soap bubbles are a common interfacial fluid dynamics phenomenon having applications such as buoyant hollow spherical fillers and flow visualization of large scale airflows. In contrast to the dynamics of liquid drops in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented, possibly because soap bubbles have gas-liquid-gas interfaces. Having the thin-liquid-film interface seems to alter the characteristics of the bubble/drop creation process. Thus, the main objective of this study is to experimentally examine how airflow develops and interacts with the soap liquid film as the film stretches and finally collapses to pinch-off. …


Liquid Phase Stability Under An Extreme Temperature Gradient, Zhi Liang, Kiran Sasikumar, Pawel Keblinski Nov 2013

Liquid Phase Stability Under An Extreme Temperature Gradient, Zhi Liang, Kiran Sasikumar, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using Nonequilibrium Molecular Dynamics Simulations, We Subject Bulk Liquid to a Very High-Temperature Gradient and Observe a Stable Liquid Phase with a Local Temperature Well above the Boiling Point. Also, under This High-Temperature Gradient, the Vapor Phase Exhibits Condensation into a Liquid at a Temperature Higher Than the Saturation Temperature, Indicating that the Observed Liquid Stability is Not Caused by Nucleation Barrier Kinetics. We Show that, Assuming Local Thermal Equilibrium, the Phase Change Can Be Understood from the Thermodynamic Analysis. the Observed Elevation of the Boiling Point is Associated with the Interplay between the "Bulk" Driving Force for the Phase …


Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii Sep 2013

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii

FIU Electronic Theses and Dissertations

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system …


Mechanical Design Of Pird (Principal Investigator Rack Drawer) For Sofia, Hari Prasad Shetty Mr., Murali Krishna Kandlagunta Mrs., John Miles Mr., Zaheer Ali Mr. Aug 2013

Mechanical Design Of Pird (Principal Investigator Rack Drawer) For Sofia, Hari Prasad Shetty Mr., Murali Krishna Kandlagunta Mrs., John Miles Mr., Zaheer Ali Mr.

STAR Program Research Presentations

SOFIA, the world’s largest airborne observatory with 2.5-meter diameter infrared telescope is equipped with 7 instruments: EXES, FIFI-LS, FLITECAM, FORCAST, GREAT, HAWC, and HIPO. Flying at altitudes between 39,000 and 45,000 feet, SOFIA avoids 99% of the atmospheric water vapor, records and analyzes the infrared radiation from the cosmos. SOFIA is able to observe the occultation of stars by solar system objects. By determining the size, compositions, and atmospheric structures of these objects, SOFIA can help answer the questions on creation and evolution of the universe, formation of the stars and planets, and nature of black hole at the center …


Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin J. Fregly, Jonathan P. Walter, Allison Kinney, Scott A. Banks, Darryl D. D'Lima, Thor F. Besier, David G. Lloyd Aug 2013

Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin J. Fregly, Jonathan P. Walter, Allison Kinney, Scott A. Banks, Darryl D. D'Lima, Thor F. Besier, David G. Lloyd

Mechanical and Aerospace Engineering Faculty Publications

This study investigates whether use of muscle excitation controls constructed from subjectspecific muscle synergy information can improve optimization prediction of knee contact forces and muscle excitations during walking. Muscle synergies quantify how a large number of experimental muscle electromyographic (EMG) signals can be reconstructed by linearly mixing a much smaller number of neural commands generated by the nervous system. Our hypothesis was that controlling all muscle excitations with a small set of experimentally calculated neural commands would improve prediction of knee contact forces and leg muscle excitations compared to using independently controlled muscle excitations.


End-Of-Life Management Of Crystalline Silicon Photovoltaic Module, Jun-Ki Choi May 2013

End-Of-Life Management Of Crystalline Silicon Photovoltaic Module, Jun-Ki Choi

Mechanical and Aerospace Engineering Faculty Publications

PV manufacturing has been growing over the past 10 years and further annual growth of 15% is expected until 2020. A study on positioning a grand plan for solar power shows how vast PV arrays and other renewable energies can provide significant amount of electricity and total energy needs by 2050. Various new PV technologies have been introduced in the market and existing technologies have undergone further development. How all these developments will affect the fate of the end-of-life PV modules is uncertain. In addition, the market price of some rare earth materials utilized in the manufacturing of the various …


Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin J. Fregly, Jonathan P. Walter, Allison Kinney, Scott A. Banks, Darryl D. D'Lima, Thor F. Besier, David G. Lloyd Apr 2013

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin J. Fregly, Jonathan P. Walter, Allison Kinney, Scott A. Banks, Darryl D. D'Lima, Thor F. Besier, David G. Lloyd

Mechanical and Aerospace Engineering Faculty Publications

This study investigates whether use of subject-specific muscle synergies can improve optimization predictions of muscle excitation patterns and knee contact forces during walking. Muscle synergies describe how a small number of neural commands generated by the nervous system can be linearly combined to produce the broad range of muscle electromyographic (EMG) signals measured experimentally. By quantifying the interdependence of individual EMG signals, muscle synergies provide dimensionality reduction for the neural control redundancy problem. Our hypothesis was that use of subjectspecific muscle synergies to limit muscle excitation patterns would improve prediction of muscle EMG patterns at the hip, knee, and ankle …


Equilibrium And Nonequilibrium Molecular Dynamics Simulations Of Thermal Conductance At Solid-Gas Interfaces, Zhi Liang, William Evans, Pawel Keblinski Feb 2013

Equilibrium And Nonequilibrium Molecular Dynamics Simulations Of Thermal Conductance At Solid-Gas Interfaces, Zhi Liang, William Evans, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Thermal Conductance at Solid-Gas Interfaces with Different Interfacial Bonding Strengths is Calculated through Green-Kubo Equilibrium Molecular Dynamics (EMD) Simulations. Due to the Finite Size of the Simulation System, the Long-Time Integral of the Time Correlation Function of Heat Power Across the Solid-Gas Interface Exhibits an Exponential Decay, Which Contains the Information on Interfacial Thermal Conductance. If an Adsorbed Gas Layer is Formed on the Solid Surface, It is Found that the Solid-Gas Interface Needs to Be Defined at a Plane Outside the Adsorbed Layer So as to Obtain the Correct Result from the Green-Kubo Formula. the EMD Simulation Result …


Improvement Of Heat Transfer Efficiency At Solid-Gas Interfaces By Self-Assembled Monolayers, Zhi Liang, William Evans, Tapan Desai, Pawel Keblinski Feb 2013

Improvement Of Heat Transfer Efficiency At Solid-Gas Interfaces By Self-Assembled Monolayers, Zhi Liang, William Evans, Tapan Desai, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using Molecular Dynamics Simulations, We Demonstrate that the Efficiency of Heat Exchange between a Solid and a Gas Can Be Maximized by Functionalizing Solid Surface with Organic Self-Assembled Monolayers (SAMs). We Observe that for Bare Metal Surfaces, the Thermal Accommodation Coefficient (TAC) Strongly Depends on the Solid-Gas Interaction Strength. for Metal Surfaces Modified with Organic SAMs, the TAC is Close to its Theoretical Maximum and is Essentially Independent from the SAM-Gas Interaction Strength. the Analysis of the Simulation Results Indicates that Softer and Lighter SAMs, Compared to the Bare Metal Surfaces, Are Responsible for the Greatly Enhanced TAC. © 2013 …


Numerical Study Of Pressure Fluctuations Due To A Mach 6 Turbulent Boundary Layer, Lian Duan, Meelan M. Choudhari Jan 2013

Numerical Study Of Pressure Fluctuations Due To A Mach 6 Turbulent Boundary Layer, Lian Duan, Meelan M. Choudhari

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Reτ ≈ 464. The emphasis is on comparing the primarily vortical pressure signal at the wall with the acoustic freestream signal under higher Mach number conditions. Moreover, the Mach-number dependence of pressure signals is demonstrated by comparing the current results with those of a supersonic boundary layer at Mach 2.5 and Reτ ≈ 510. It is found that the freestream pressure intensity exhibits a strong Mach number dependence, irrespective of …


Assess The Accuracy Of The Variational Asymptotic Plate And Shell Analysis Using The Generalized Uni, Luciano Demasi, Wenbin Yu Jan 2013

Assess The Accuracy Of The Variational Asymptotic Plate And Shell Analysis Using The Generalized Uni, Luciano Demasi, Wenbin Yu

Mechanical and Aerospace Engineering Faculty Publications

The accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) is assessed against several higher order, zig zag and layerwise theories generated by using the invariant axiomatic framework denoted as Generalized Unified Formulation (GUF). These theories are also compared against the elasticity solution developed for the case of a sandwich structure with high Face to Core Stiffness Ratio. GUF allows to use an infinite number of axiomatic theories (Equivalent Single Layer theories with or without zig zag effects and Layerwise theories as well) with any combination of orders of the displacements and it is an ideal tool to precisely …