Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Mechanical Engineering

Repeatable Nanostructures In Dielectrics By Femtosecond Laser Pulse Trains, Lan Jiang, Hai-Lung Tsai Oct 2005

Repeatable Nanostructures In Dielectrics By Femtosecond Laser Pulse Trains, Lan Jiang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the plasma model recent developed by the authors, this study predicts the existence of a constant ablation-depth zone with respect to fluence in femtosecond laser ablation of dielectrics, which has also been observed experimentally. It is found that the value of the constant ablation depth is significantly decreased by the pulse train technology. Repeatable nanostructures can be achieved with the parameters in the constant ablation-depth zone of a femtosecond pulse train, even when the laser system is subject to fluctuations in fluences.


Adaptive Control Of A Projectile Fin Using Piezoelectric Elastic Beam, Smitha Mani, Sahjendra N. Singh, Surya Kiran Parimi, Woosoon Yim, Mohamed B. Trabia Aug 2005

Adaptive Control Of A Projectile Fin Using Piezoelectric Elastic Beam, Smitha Mani, Sahjendra N. Singh, Surya Kiran Parimi, Woosoon Yim, Mohamed B. Trabia

Mechanical Engineering Faculty Research

No abstract provided.


Introduction To Product Design And Innovation: A Cross Disciplinary Mini Curriculum, Patricia Backer, Seth Bates Jun 2005

Introduction To Product Design And Innovation: A Cross Disciplinary Mini Curriculum, Patricia Backer, Seth Bates

Faculty Publications

For the past two years, faculty at San Jose State University (SJSU) have implemented a three- semester minicurriculum in Product Design and Manufacturing. The project follows the Project- Based Learning (PBL) model and is central to the Certificate Program in Product Design in the Mechanical Engineering Department, the Manufacturing Systems concentration in the Department of Aviation and Technology, and the Industrial Design Program in the School of Art and Design. Students in the three courses in the minicurriculum face design challenges while being instructed about the constraints of manufacturability. In each course, students develop three to four products. All products …


Hierarchical Optimal Force-Position-Contour Control Of Machining Processes. Part I. Controller Methodology, Yan Tang, Robert G. Landers, S. N. Balakrishnan Jun 2005

Hierarchical Optimal Force-Position-Contour Control Of Machining Processes. Part I. Controller Methodology, Yan Tang, Robert G. Landers, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

There has been a tremendous amount of research in machine tool servomechanism control, contour control, and machining force control; however, to date these technologies have not been tightly integrated. This paper develops a hierarchical optimal control methodology for the simultaneous regulation of servomechanism positions, contour error, and machining forces. The contour error and machining force process reside in the top level of the hierarchy where the goals are to 1) drive the contour error to zero to maximize quality and 2) maintain a constant cutting force to maximize productivity. These goals are systematically propagated to the bottom level, via aggregation …


Hierarchical Optimal Force-Position-Contour Control Of Machining Processes. Part Ii. Illustrative Example, Yan Tang, Robert G. Landers, S. N. Balakrishnan Jun 2005

Hierarchical Optimal Force-Position-Contour Control Of Machining Processes. Part Ii. Illustrative Example, Yan Tang, Robert G. Landers, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

There has been a tremendous amount of research in machine tool servomechanism control, contour control, and machining force control; however, to date these technologies have not been tightly integrated. This paper develops a hierarchical optimal control methodology for the simultaneous regulation of servomechanism positions, contour error, and machining forces. The contour error and machining force process reside in the top level of the hierarchy where the goals are to 1) drive the contour error to zero to maximize quality and 2) maintain a constant cutting force to maximize productivity. These goals are systematically propagated to the bottom level, via aggregation …


Modelling And Validation Of A Propellant Mixer For Controller Design, Hanz Richter, Enrique Barbieri, Fernando Figueroa Nasa Stennis Space Center Feb 2005

Modelling And Validation Of A Propellant Mixer For Controller Design, Hanz Richter, Enrique Barbieri, Fernando Figueroa Nasa Stennis Space Center

Mechanical Engineering Faculty Publications

A mixing chamber used in rocket engine testing at the NASA Stennis Space Center is modelled by a system of two nonlinear ordinary differential equations. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. Mixer operation during a test requires the regulation of its internal pressure, exit mass flow, and exit …


Optimal And Hierarchical Formation Control For Uav, Xiaohua Wang, S. N. Balakrishnan Jan 2005

Optimal And Hierarchical Formation Control For Uav, Xiaohua Wang, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, optimal and hierarchical control concepts are investigated for cooperative formation flying of aircrafts. The airplanes are modeled as point mass and represented by double integrators. And all the planes are considered to be in a plane. For demonstration of the concepts, a task of forming a square from arbitrary initial conditions is presented to four airplanes. The final position that each airplane has to reach is unknown to them. The goal for the team is abstracted in the top layer. The system is modeled as a two layer hierarchical system in which the global information comes from …


Results Of An Interlaboratory Study Of The Astm Standard Test Method For Tensile Properties Of Polymer Matrix Composites D 3039, Margaret Pinnell, Richard Fields, Ronald Zabora Jan 2005

Results Of An Interlaboratory Study Of The Astm Standard Test Method For Tensile Properties Of Polymer Matrix Composites D 3039, Margaret Pinnell, Richard Fields, Ronald Zabora

Mechanical and Aerospace Engineering Faculty Publications

An investigation was conducted on the ASTM Standard Test Method for Tensile Properties of Polymer Matrix Composites (D 3039). This investigation consisted of both preliminary testing and an interlaboratory test program. Information generated from preliminary testing was used to determine the effects of various parameters and to optimize the interlaboratory test plan and test protocol. The interlaboratory study portion of this investigation was conducted on six composite material systems in a variety of lay-up configurations. The number of participating labs ranged from five to nine depending on the material type. Precision statistics were determined for the ASTM D 3039 standard …


Measurement And Control Of Torque Ripple-Induced Frame Torsional Vibration In A Surface Mount Permanent Magnet Machine, Jason Neely, Steven Pekarek, Daniel S. Stutts, Philip Beccue Jan 2005

Measurement And Control Of Torque Ripple-Induced Frame Torsional Vibration In A Surface Mount Permanent Magnet Machine, Jason Neely, Steven Pekarek, Daniel S. Stutts, Philip Beccue

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A sensor to measure the stator torsional vibration due to torque ripple produced by a surface mount permanent magnet machine is first described. The sensor is relatively inexpensive and is straight forward to incorporate into a drive system. Experiments are performed to validate that the voltage produced by the sensor is linearly related to torque ripple amplitude. Closed-loop controllers are then described that adjust the stator current harmonics applied to the machine to achieve a commanded average torque while mitigating measured torsional vibration. Simulation and experimental results are used to demonstrate the effectiveness of the control techniques.


An Existing Global Heptane Mechanism Augmented With Diffusive Transport, Michael R. Foster, Howard Pearlman Jan 2005

An Existing Global Heptane Mechanism Augmented With Diffusive Transport, Michael R. Foster, Howard Pearlman

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The couplings between diffusive transport and the temperature and species concentration distributions associated with low and intermediate temperature heptane oxidation are explored using an existing four-step heptane mechanism, tuned for elevated pressures. The energy and species concentration equations are augmented with diffusive fluxes for heat and species and solved numerically in a one-dimensional domain. The ignition delay times are also tabulated and compared with the zero-dimensional data reported in the literature.


Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look Jan 2005

Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look

Engineering Management and Systems Engineering Faculty Research & Creative Works

A nonlinear optimal re-entry temperature control problem is solved using single network adaptive critic (SNAC) technique. The nonlinear model developed and used accounts for conduction, convection and radiation at high temperature, represents the dynamics of heat transfer in a cooling fin for an object re-entering the earth's atmosphere. Simulation results demonstrate that the control synthesis technique presented is very effective in obtaining a desired temperature profile over a wide envelope of initial temperature distribution.


Dynamic Re-Optimization Of A Mems Controller In Presence Of Unmodeled Uncertainties, Nishant Unnikrishnan, S. N. Balakrishnan, Venkat Durbha Jan 2005

Dynamic Re-Optimization Of A Mems Controller In Presence Of Unmodeled Uncertainties, Nishant Unnikrishnan, S. N. Balakrishnan, Venkat Durbha

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Online trained neural networks have become popular in recent years in designing robust and adaptive controllers for dynamic systems with uncertainties in their system equations because of their universal function approximation property. This paper discusses a technique that dynamically reoptimizes a Single Network Adaptive Critic (SNAC) based optimal controller in the presence of unmodeled uncertainties. The controller design is carried out in two steps: (i) synthesis of a set of online neural networks that capture the uncertainties in the plant equations on-line (ii) re-optimization of the existing optimal controller to drive the states of the plant to a desired reference …


A Model Of Function-Based Representations, Michael Van Wie, Cari R. Bryant, Matt R. Bohm, Robert B. Stone, Daniel A. Mcadams Jan 2005

A Model Of Function-Based Representations, Michael Van Wie, Cari R. Bryant, Matt R. Bohm, Robert B. Stone, Daniel A. Mcadams

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The need to model and to reason about design alternatives throughout the design process demands robust representation schemes of function, behavior, and structure. Function describes the physical effect imposed on an energy or material flow by a design entity without regard for the working principles or physical solutions used to accomplish this effect. Behaviors are the physical events associated with a physical artifact (or hypothesized concept) over time (or simulated time) as perceived by an observer. Structure, the most tangible concept, partitions an artifact into meaningful constituents such as features, Wirk elements, and interfaces in addition to the widely used …


Experimental Verification Of Near-Wall Hindered Diffusion Theory For The Brownian Motion Of Nanoparticles Using Evanescent Wave Microscopy, Kenneth D. Kihm, Arindam Banerjee Jan 2005

Experimental Verification Of Near-Wall Hindered Diffusion Theory For The Brownian Motion Of Nanoparticles Using Evanescent Wave Microscopy, Kenneth D. Kihm, Arindam Banerjee

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A total internal reflection fluorescence microscopy technique coupled with three-dimensional tracking of nanoparticles is used to experimentally verify the theory on near-wall hindered Brownian motion [Goldman et al., Chem. Eng. Sci. 22, 637 (1967); Brenner, Chem. Eng. Sci. 16, 242 (1967)] very close to the solid surface (within ~1 µm). The measured mean square displacements (MSDs) in the lateral x-y directions show good agreement with the theory for all tested nanoparticles of radii 50, 100, 250, and 500 nm. However, the measured MSDs in the z direction deviate substantially from the theory particularly for the case of smaller particles of …


Modular Control Laboratory System With Integrated Simulation, Animation, Emulation, And Experimental Components, J. Liu, Robert G. Landers Jan 2005

Modular Control Laboratory System With Integrated Simulation, Animation, Emulation, And Experimental Components, J. Liu, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A typical sequence for the design of a controller, given the desired objectives, is the following: system modeling, design and mathematical analysis, simulation studies, emulation, and experimental implementation. Most control courses thoroughly cover design and mathematical analysis and utilize a simulation or experimental project at the end of the course. However, animation and emulation are seldom utilized and projects rarely cover the entire controller design sequence. This paper presents a control laboratory system developed at the University of Missouri at Rolla that integrates simulation, animation, emulation, and experimental components. The laboratory system may be applied to a wide variety of …


Stochastic Optimal Control With Neural Networks And Application To A Retailer Inventory Problem, Zhongwu Huang, Xiaohua Wang, S. N. Balakrishnan Jan 2005

Stochastic Optimal Control With Neural Networks And Application To A Retailer Inventory Problem, Zhongwu Huang, Xiaohua Wang, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Overwhelming computational requirements of classical dynamic programming algorithms render them inapplicable to most practical stochastic problems. To overcome this problem a neural network based Dynamic Programming (DP) approach is described in this study. The cost function which is critical in a dynamic programming formulation is approximated by a neural network according to some designed weight-update rule based on Temporal Difference(TD)learning. A Lyapunov based theory is developed to guarantee an upper error bound between the output of the cost neural network and the true cost. We illustrate this approach through a retailer inventory problem.


Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan Jan 2005

Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems with a finite number of actuators in the spatial domain. Unlike the existing ''approximate-then-design'' and ''design-then-approximate'' techniques, this approach does not use any approximation either of the system dynamics or of the resulting controller. The formulation has more practical significance because one can implement a set of discrete controllers with relative ease. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved through simulations. …


Hierarchical Optimal Force-Position Control Of A Turning Process, B. Pandurangan, Robert G. Landers, S. N. Balakrishnan Jan 2005

Hierarchical Optimal Force-Position Control Of A Turning Process, B. Pandurangan, Robert G. Landers, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machining process control technologies are currently not well integrated into machine tool controllers and, thus, servomechanism dynamics are often ignored when designing and implementing process controllers. In this brief, a hierarchical controller is developed that simultaneously regulates the servomechanism motions and cutting forces in a turning operation. The force process and servomechanism system are separated into high and low levels, respectively, in the hierarchy. The high-level goal is to maintain a constant cutting force to maximize productivity while not violating a spindle power constraint. This goal is systematically propagated to the lower level and combined with the low-level goal to …