Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson Apr 2020

Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Metal additive manufacturing (AM/3D printing) offers unparalleled advantages over conventional manufacturing, including greater design freedom and a lower lead time. However, the use of AM parts in safety-critical industries, such as aerospace and biomedical, is limited by the tendency of the process to create flaws that can lead to sudden failure during use. The root cause of flaw formation in metal AM parts, such as porosity and deformation, is linked to the temperature inside the part during the process, called the thermal history. The thermal history is a function of the process parameters and part design.

Consequently, the first step …


Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling Aug 2017

Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of real-time computational tasks contending for shared resources must be cooperatively managed to obtain mission objectives. Traditionally, control of the UAS is designed assuming a fixed, high sampling rate in order to maintain reliable performance and margins of stability. But emerging methods challenge this design by dynamically allocating resources to computational tasks, thereby affecting control and mission performance. To apply these emerging strategies, a characterization and understanding of the effects of timing on control and trajectory following performance is required. Going beyond traditional control evaluation techniques, …


Heat Transfer Enhancement And Applications Of Femtosecond Laser Processed Metallic Surfaces, Corey M. Kruse Dec 2014

Heat Transfer Enhancement And Applications Of Femtosecond Laser Processed Metallic Surfaces, Corey M. Kruse

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, functionalized 304 stainless steel metallic surfaces were created with the use of a Femtosecond Laser Surface Processing (FLSP) technique. The laser processing technique produces self-organized micro/nanostructures on the surface. The heat transfer performance of various FLSP functionalized surfaces were characterized through pool boiling and Leidenfrost experiments. Enhancement in both the nucleate and film boiling heat transfer were observed through an increase of the critical heat flux and heat transfer coefficient as well as shifts in the Leidenfrost temperature respectively. For both experiments, a polished reference sample was used as a baseline line to compare against the …


Experimental Study On The Effect Of Air Flow On Soap Bubble Formation, John M. Davidson Dec 2013

Experimental Study On The Effect Of Air Flow On Soap Bubble Formation, John M. Davidson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Soap bubbles are a common interfacial fluid dynamics phenomenon having applications such as buoyant hollow spherical fillers and flow visualization of large scale airflows. In contrast to the dynamics of liquid drops in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented, possibly because soap bubbles have gas-liquid-gas interfaces. Having the thin-liquid-film interface seems to alter the characteristics of the bubble/drop creation process. Thus, the main objective of this study is to experimentally examine how airflow develops and interacts with the soap liquid film as the film stretches and finally collapses to pinch-off. …


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Sep 2010

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …