Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Fifty-Plus-Year Postflight Analysis Of First Fluid Experiment Aboard A Spacecraft, Mark M. Weislogel, Yongkang Chen, William J. Masica, Fred J. Kohl, Robert D. Green Jan 2017

Fifty-Plus-Year Postflight Analysis Of First Fluid Experiment Aboard A Spacecraft, Mark M. Weislogel, Yongkang Chen, William J. Masica, Fred J. Kohl, Robert D. Green

Mechanical and Materials Engineering Faculty Publications and Presentations

This year marks the 55th anniversary of the first fluid physics experiment performed aboard a spacecraft during the Mercury-Atlas 7 mission. Since then, NASA has conducted over 80 fluids physics experiments aboard a variety of spacecraft, many of which have enhanced the understanding of large-length-scale capillary phenomena relevant to liquid management in the weightless state. As both celebration and demonstration, the Mercury-Atlas 7 fluids experiment is revisited in light of the current understanding of large-length-scale capillary fluidics. Employing a modern numerical tool, a rich variety of experimental outcomes are discovered that were not observed during the flight experiment. Interestingly, experimental …


Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer Oct 2014

Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer

Mechanical and Materials Engineering Faculty Publications and Presentations

The ability to separate liquid and gas phases in the absence of a gravitational acceleration has proven a challenge to engineers since the inception of space exploration. Due to our singular experience with terrestrial systems, artificial body forces are often imparted in multiphase fluid systems aboard spacecraft to reproduce the buoyancy effect. This approach tends to be inefficient, adding complexity, resources, and failure modes. Ever present in multiphase phenomena, the forces of surface tension can be exploited to aid passive phase separations where performance characteristics are determined solely by geometric design and system wettability. Said systems may be readily designed …


Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg Mar 2014

Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg

Mechanical and Materials Engineering Faculty Publications and Presentations

Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind …