Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui Dec 2023

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui

Mechanical and Aerospace Engineering Faculty Publications

Lightning swept stroke creates multiple lightning attachments along an aircraft in flight. This introduces distinct structural damage compared to that from a single-point lightning current injection test in laboratory. This study presents both experimental and numerical studies on lightning damage in carbon fibre-reinforced polymer (CFRP) composites under swept stroke. Coupled electrical–thermal finite element (FE) models were proposed to predict lightning damage to CFRP composites under single-point current injection and swept stroke, respectively. A lightning swept stroke testing method was proposed by embedding a copper wire inside the composites to simulate multiple lightning attachments on the composites. The FE-predicted damage from …


Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy Nov 2023

Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

A novel integrated modelling framework is proposed as a set of coupled virtual tests to predict the residual compressive strength of carbon/epoxy composites after a lightning strike. Sequentially-coupled thermal-electric and thermo-mechanical models were combined with Compression After Lightning Strike (CAL) analyses, considering both thermal and mechanical lightning strike damage. The predicted lightning damage was validated using experimental images and X-ray Computed Tomography. Delamination and ply degradation information were mapped to a compression model, with a maximum stress criterion, using python scripts. Experimental data, in which artificial lightning strike and compression testing were performed, was used to assess the predictive capabilities …


On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay Nov 2023

On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay

Mechanical and Aerospace Engineering Faculty Publications

Lightning strike damage can severely affect the thermo-mechanical performance of composite laminates. It is essential to quantify the effect of lightning strikes considering the inevitable influence of material and geometric uncertainties for ensuring the operational safety of aircraft. This paper presents an efficient support vector machine (SVM)-based surrogate approach coupled with computationally intensive transient thermal-electrical finite element simulations to quantify the uncertainty in lightning strike damage. The uncertainty in epoxy matrix thermal damage and electrical responses of unprotected carbon/epoxy composite laminates is probabilistically quantified considering the stochasticity in temperature-dependent multi-physical material properties and ply orientations. Further, the SVM models are …


Multiscale Damage Modelling Of Notched And Un-Notched 3d Woven Composites With Randomly Distributed Manufacturing Defects, S.Z.H. Shah, Juhyeong Lee, P.S.M. Megat-Yusoff, Syed Zahid Hussain, T. Sharif, R.S. Choudhry May 2023

Multiscale Damage Modelling Of Notched And Un-Notched 3d Woven Composites With Randomly Distributed Manufacturing Defects, S.Z.H. Shah, Juhyeong Lee, P.S.M. Megat-Yusoff, Syed Zahid Hussain, T. Sharif, R.S. Choudhry

Mechanical and Aerospace Engineering Faculty Publications

This work proposes a stochastic multiscale computational framework for damage modelling in 3D woven composite laminates, by considering the random distribution of manufacturing-induced imperfections. The proposed method is demonstrated to be accurate, while being simple to implement and requiring modest computational resources. In this approach, a limited number of cross-sectional views obtained from micro-computed tomography (µCT) are used to obtain the stochastic distribution of two key manufacturing-induced defects, namely waviness and voids. This distribution is fed into a multiscale progressive damage model to predict the damage response of three-dimensional (3D) orthogonal woven composites. The accuracy of the proposed model was …


Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee Mar 2023

Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

In this work, three-dimensional (3D) finite element simulations were undertaken to study the effects of lightning strikes on the microscale behaviour of continuous fibre-reinforced composite materials and to predict and understand complex lightning damage mechanisms. This approach is different from the conventional mesoscale or macroscale level of analysis, that predicts the overall lightning damage in composite laminates, thus providing better understanding of lightning-induced thermo-mechanical damage at a fundamental level. Micromechanical representative volume element (RVE) models of a UD composite laminate were created with circular carbon fibres randomly distributed in an epoxy matrix. The effects of various grounding conditions (one-, two-, …


Developing Test Methods For Compression After Lightning Strikes, Xiaodong Xu, Scott L. J. Millen, Juhyeong Lee, Gasser Abdelal, Daniel Mitchard, Michael R. Wisnom, Adrian Murphy Jan 2023

Developing Test Methods For Compression After Lightning Strikes, Xiaodong Xu, Scott L. J. Millen, Juhyeong Lee, Gasser Abdelal, Daniel Mitchard, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

Research into residual strength after lightning strike is increasing within the literature. However, standard test methods for measuring residual compressive strength after lightning strikes do not exist. For the first time, a systematic experimental study is undertaken to evaluate modifications necessary to standard Compression After Impact (CAI) specimen geometry and test jig design to induce specimen failure at the lightning damage region. Four laboratory generated lightning strike currents with peak amplitudes ranging from 25 to 100 kA have been studied. Test set-up modifications were made considering the scale of the lightning damage and its potential proximity to specimen edges. Specimen …


Optimal Spacecraft Guidance, Matthew W. Harris, M. Benjamin Rose Jan 2023

Optimal Spacecraft Guidance, Matthew W. Harris, M. Benjamin Rose

Mechanical and Aerospace Engineering Faculty Publications

This book is designed for a one-semester course at Utah State University titled MAE 6570 Optimal Spacecraft Guidance. The class meets for 75 minutes, twice per week, for 14 weeks. There are no prerequisites other than graduate standing in engineering. Proficiency in calculus, differential equations, linear algebra, and computer programming is required. Students find that previous experience in space dynamics, linear multivariable control, or optimal control is helpful.

The goal of the book and course is for students to develop fundamental skills needed to do professional work in the area of spacecraft guidance. After working through the book, students should …