Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick Aug 2020

Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick

Mechanical and Aerospace Engineering Faculty Publications

The study focuses on modeling and simulations of sodium-sCO2 intermediary compact heat exchangers for sodium-cooled fast reactors (SFR). A simplified 1-D analytical model was developed in companion with a 3-D CFD model. Using classic heat transfer correlations for Nusselt number, some simulation results using the 1-D model have achieved reasonable match with the CFD simulation results for longer channels (i.e., 40 cm and 80 cm). However, for short channel (10 cm) when axial conduction within the sodium fluid is significant, the 1-D model significantly over-predicted the heat transfer effectiveness. By incorporating the temperature-jump model, the 1-D model can extend its …


Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel Jan 2020

Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel

Theses and Dissertations--Mechanical Engineering

Atmospheric entry occurs at very high speeds which produces high temperature around the vehicle. Entry vehicles are thus equipped with Thermal Protection Systems which are usually made of ablative materials. This dissertation presents a new solver that models the atmospheric entry environment and the thermal protection systems. In this approach, both the external flow and the porous heat shield are solved using the same computational domain. The new solver uses the Volume Averaged Navier-Stokes Equations adapted for hypersonic non-equilibrium flow, and is thus valid for both domains. The code is verified using analytical problems, set of benchmarks and also a …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …