Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Aerodynamic Design And Analysis Of A Modified 2006 Mazda Miata, William N. Recher Apr 2024

Aerodynamic Design And Analysis Of A Modified 2006 Mazda Miata, William N. Recher

Honors College Theses

Aerodynamic forces developed by automobiles have destabilizing effects at high speed. These forces tend to skew toward a vehicle’s rear which can present safety concerns, especially for rear-wheel-drive automobiles like the Mazda Miata. To address oversteer and high-speed instability, a vehicle’s design can be tailored to bring about aerodynamic balance and improve traction. LiDAR was used to bring the physical automobile into the digital space. Then, a splitter and diffuser were added to reduce the magnitude of the destabilizing forces. Next, the size and shape of the rear-wing required to balance the vehicle was calculated using a combination of parameters …


A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado May 2022

Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The development of hypersonic airbreathing engines, such as a supersonic combustion ramjet, or scramjet, are implemented for flight Mach numbers over 5 where combustion must occur in supersonic conditions. The advancement of scramjet propulsion has led to favored usage over rocket propulsion systems for in atmosphere applications due to their lighter weight, higher specific impulse, and greater maneuverability [1]. The combustor section of a scramjet engine houses the fuel injectors. Fuel is injected into the supersonic flow with the main objective of achieving rapid and thorough fuel-air mixing because the residence time in the combustion chamber has a timescale of …


Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas Oct 2021

Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas

Doctoral Dissertations

Offshore wind energy is a rapidly expanding source of renewable energy worldwide, but many aspects of offshore wind turbine behavior are still poorly understood and are not accurately captured by low-cost engineering models used in the design process. To help improve these models, computational fluid dynamics (CFD) can provide valuable insight into the complex fluid flows that affect offshore wind turbine power generation and structural loads. This research uses CFD simulations to examine three main topics important to future offshore wind development: how breaking waves affect structural loads for fixed-bottom wind turbines; how platform motions affect power generation, wake characteristics, …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


A Numerical Investigation Of Microgravity Evaporation, Daniel Peter Ringle Apr 2020

A Numerical Investigation Of Microgravity Evaporation, Daniel Peter Ringle

Dissertations and Theses

Evaporation is important to myriad engineering processes such as cooling, distillation, thin film deposition, and others. In fact, NASA has renewed interest in using cabin air pressure evaporation as a means to recycle waste water in space. As one example, NASA recently conducted experiments aboard the International Space Station (ISS) to measure evaporation rates in microgravity and to determine the impacts of porous structure on the process. It has long been assumed that differences in evaporation rates between 1-g0 and microgravity are small. However, discrepancies by as much as 40% have been observed in practice. The assumption now …


Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang Mar 2018

Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang

Theses and Dissertations

Shock-wave/boundary layer interactions (SWBLI) produce undesirable dynamic loads and separated unsteady flows, adversely impacting the performance and structural integrity of supersonic vehicles. Computational fluid dynamics (CFD) is a successful tool in experimental planning and shows promise as a critical tool in understanding and mitigating negative effects of SWBLI. The goal of this research is to demonstrate the effect of bleed holes on shock stability using the OVERFLOW CFD solver to inform the planning of an Air Force Research Laboratory (AFRL) SWBLI wind tunnel experiment. First, a two-dimensional, flat plate, single-hole configuration was developed. Massflow discrepancies of 14.8% were initially observed …


Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar Jan 2018

Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar

Theses and Dissertations--Mining Engineering

Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, …


A Computational Analysis Of The Aerodynamic And Aeromechanical Behavior Of The Purdue Multistage Compressor, David Monk Oct 2014

A Computational Analysis Of The Aerodynamic And Aeromechanical Behavior Of The Purdue Multistage Compressor, David Monk

Open Access Theses

Compressor design programs are becoming more reliant on computational tools to predict and optimize aerodynamic and aeromechanical behavior within a compressor. Recent trends in compressor development continue to push for more efficient, lighter weight, and higher performance machines. To meet these demands, designers must better understand the complex nature of the inherently unsteady flow physics inside of a compressor. As physical testing can be costly and time prohibitive, CFD and other computational tools have become the workhorse during design programs.

The objectives of this research were to investigate the aerodynamic and aeromechanical behavior of the Purdue multistage compressor, as well …


Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir Jan 2012

Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir

Mechanical Engineering Master's Theses

Aerodynamic characteristics of a racing car are of significant interest in reducing car-racing accidents due to wind loading and in reducing the fuel consumption. At the present, modified car racing becomes more popular around the world. Sports cars are most commonly seen with spoilers, such as Ford Mustang, Subaru Impreza, and Chevrolet Corvette. Even though these vehicles typically have a more rigid chassis and a stiffer suspension to aid in high-speed maneuverability, a spoiler can still be beneficial. One of the design goals of a spoiler is to reduce drag and increase fuel efficiency. Many vehicles have a fairly steep …


Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko Jul 2004

Uncertainty Propagation And Robust Design In Cfd Using Sensitivity Derivatives, Michele M. Putko

Mechanical & Aerospace Engineering Theses & Dissertations

This study investigates and demonstrates a methodology for uncertainty propagation and robust design in Computational Fluid Dynamics (CFD). Efficient calculation of both first- and second-order sensitivity derivatives is requisite in the proposed methodology. In this study, first- and second-order sensitivity derivatives of code output with respect to code input are obtained through an efficient incremental iterative approach.

An approximate statistical moment method for uncertainty propagation is first demonstrated on a quasi one-dimensional (1-D) Euler CFD code. This method is then extended to a two-dimensional (2-D) subsonic inviscid model airfoil problem. In each application, given statistically independent, random, normally distributed input …


Heat Transfer To The Inclined Trailing Wall Of An Open Cavity, Orval A. Powell Mar 1999

Heat Transfer To The Inclined Trailing Wall Of An Open Cavity, Orval A. Powell

Theses and Dissertations

Experimental and computational heat transfer investigations were performed on a cavity with an inclined trailing wall (20-degrees to the horizontal), simulating one under investigation for use in a scramjet engine. Heat transfer data are reported in the form of Stanton number obtained using a curve fit to the recorded transient surface temperature history under cold flow conditions. Ascending from the reattachment point, the Stanton number increased by nearly 50% due to flow compression. This effect of flow compression was also evident at the junction of the cavity floor and inclined trailing wall, where the Stanton number also increased by 50%. …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …