Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez Dec 2023

An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez

Open Access Theses & Dissertations

Supersonic wind tunnels allow scientists and researchers to evaluate and analyze the behaviors of objects under real-life conditions when subjected to supersonic speeds. One of the main complexities when building a wind tunnel is the design of the convergent-divergent nozzle that is used to produce high-speed and high-quality flows. To achieve supersonic speeds, this nozzle adopts a specialized approach that incorporates the complexities of flow compressibility. The compressible effect is accurately evaluated using isentropic relations, allowing for precise determination of stagnation pressure and temperature, and static pressure and temperature relevant to the desired Mach number. Isentropic equations used to define …


On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman Jan 2023

On The Simulation Of Supersonic Flame Holder Cavities With Openfoam, Zachary Chapman

Electronic Theses and Dissertations

One of the next major advancements in the aerospace industry will be hypersonic flight. However, to achieve hypersonic flight, propulsion systems capable of reaching hypersonic speeds need to be developed. One of the more promising hypersonic propulsion systems is the scramjet engine, however, several problems still need to be explored before reliable scramjet engines can be produced, the biggest being keeping the engine ignited. This has led to the use of flame holder cavities to create a region of subsonic flow within the engine to allow combustion to occur. High experimental costs make the use of computational fluid dynamic (CFD) …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Simulation Of Radiation Flux From Thermal Fluid In Origami Tubes, Robert R. Bebeau Jun 2018

Simulation Of Radiation Flux From Thermal Fluid In Origami Tubes, Robert R. Bebeau

USF Tampa Graduate Theses and Dissertations

Spacecraft in orbit experience temperature swings close to 240 K as the craft passes from the shadow of the Earth into direct sunlight. To regulate the craft’s internal energy, large radiators eject unwanted energy into space using radiation transfer. The amount of radiation emitted is directly related to the topology of the radiator design. Deformable structures such as those made with origami tessellation patterns offer a mechanism to control the quantity of energy being emitted by varying the radiator shape. Three such patterns, the Waterbomb, Huffman Waterbomb, and Huffman Stars-Triangles, can be folded into tubes. Origami tubes offer greater control …


A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver Dec 2017

A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

It is known that the aerodynamic center changes from quarter chord to half chord from incompressible to compressible flows on airfoils. Compressible corrections are derived and implemented in a vortex panel code. These results will be used to find the aerodynamic centers for the specified Mach range of 0.1 to 0.8 in 0.1 increments within - 6 to 6 degrees angle of attack. OpenFOAM 5 cases will be created with specific meshes and settings. The results calculated from OpenFOAM 5 will be compared to the results obtained from the compressible corrections.


Design And Experimental Investigation Of An Oxy-Fuel Combustion System For Magnetohydrodynamic Power Extraction, Manuel Johannes Hernandez Jan 2016

Design And Experimental Investigation Of An Oxy-Fuel Combustion System For Magnetohydrodynamic Power Extraction, Manuel Johannes Hernandez

Open Access Theses & Dissertations

A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct …


Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata Jan 2016

Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata

Open Access Theses & Dissertations

A road vehicles aerodynamics can be one of the most influential aspects of its performance. With the increased importance on fuel efficiency in recent years, new road vehicles are being developed smaller in size, with smaller displacement engines, as well as with improved aerodynamics. The aerodynamics of a vehicle can have a significant effect on its fuel efficiency, as well as other important aspects of the vehicles performance such as the top speed, acceleration, and handling. A study focusing on analyzing aerodynamic effects due to vehicle geometries such as wheels covered by the vehicles body in comparison to open wheels …


Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl Jan 2016

Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl

Graduate College Dissertations and Theses

Supersonic micronozzles operate in the unique viscosupersonic flow regime, characterized by large Mach numbers (M>1) and low Reynolds numbers (Re<1000). Past research has primarily focused on the design and analysis of converging-diverging de Laval nozzles; however, plug (i.e. centerbody) designs also have some promising characteristics that might make them amenable to microscale operation. In this study, the effects of plug geometry on plug micronozzle performance are examined for the Reynolds number range Re = 80-640 using 2D Navier-Stokes-based simulations. Nozzle plugs are shortened to reduce viscous losses via three techniques: one - truncation, two - the use of parabolic contours, and three - a geometric process involving scaling. Shortened nozzle are derived from a full length geometry designed for optimal isentropic performance. Expansion ratio (ε = 3.19 and 6.22) and shortened plug length (%L = 10-100%) are varied for the full Reynolds number range. The performance of plug nozzles is then compared to that of linear-walled nozzles for equal pressure ratios, Reynolds numbers, and expansion ratios. Linear-walled nozzle half-angle is optimized to to ensure plug nozzles are compared against the best-case linear-walled design.

Results indicate that the full length plug nozzle delivers poor performance on the microscale, incurring excessive viscous losses. Plug performance is increased by shortening the nozzle plug, with the scaling technique providing the best performance. The benefit derived from reducing plug length depends upon the Reynolds number, with a 1-2% increase for high Reynolds numbers an up to 14% increase at the lowest Reynolds number examined. In comparison to Linear-walled nozzle, plug nozzles deliver superior performance when under-expanded, however, …


Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell May 2012

Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell

Masters Theses

Vorticity Confinement (VC) is a numerical technique which enhances computation of fluid flows by acting as negative diffusion within the limit of vortical regions, preventing the inherent numerical dissipation present with conventional methods. VC shares similarities with large eddy simulation (LES), but its behavior is based on a stable negative dissipation of vortical structures controlled by the automatic balance between two parameters, μ [mu] and ε [epsilon].

In this thesis, three-dimensional, parallel-computing Navier-Stokes solvers with VC are developed using the OpenFOAM computational framework. OpenFOAM is an open-source collection of C++ libraries developed for computational fluid dynamics. Object-oriented programming concepts are …


Laminar-Turbulent Transition For Attached And Separated Flow, Qian Zhang Jan 2010

Laminar-Turbulent Transition For Attached And Separated Flow, Qian Zhang

University of Kentucky Doctoral Dissertations

A major challenge in the design of turbomachinery components for aircraft gas turbine engines is high cycle fatigue failures due to flutter. Of particular concern is the subsonic/transonic stall flutter boundary which occurs at part speed near the stall line. At these operating conditions the incidence angle is large and the relative Mach number is high subsonic or transonic. Viscous effects dominate for high incidence angles.

In order to predict the flutter phenomena, accurate calculation of the steady and unsteady aerodynamic loading on the turbomachinery airfoils is necessary. The development of unsteady aerodynamic models to predict the unsteady forces and …