Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

Theses/Dissertations

2015

Institution
Keyword
Publication

Articles 1 - 30 of 41

Full-Text Articles in Mechanical Engineering

The Aerodynamic And Dynamic Loading Of A Slender Structure By An Impacting Tornado-Like Vortex: The Influence Of Relative Vortex-To-Structure Size On Structural Loading, Matthew Nicholas Strasser Dec 2015

The Aerodynamic And Dynamic Loading Of A Slender Structure By An Impacting Tornado-Like Vortex: The Influence Of Relative Vortex-To-Structure Size On Structural Loading, Matthew Nicholas Strasser

Graduate Theses and Dissertations

Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging …


Implementing A Linear Quadratic Spacecraft Attitude Control System, Daniel Kolosa Dec 2015

Implementing A Linear Quadratic Spacecraft Attitude Control System, Daniel Kolosa

Masters Theses

This thesis implements a linear quadratic attitude control system for a low-thrust spacecraft. The goal is to maintain spacecraft alignment with a time-varying thrust vector needed for trajectory change maneuvers. A linear quadratic attitude control approach is used to maintain spacecraft pointing throughout flight. This attitude control strategy uses the thrust-acceleration input obtained from a linear quadratic optimal trajectory control model that simulates the trajectory of a spacecraft in orbit maneuvers. This attitude model simulates a CubeSat, a small satellite that is equipped with a low-thrust propulsion and attitude control system. An orbit raising and a plane change scenario is …


Studying The Optimum Design Of Automotive Thermoelectric Air Conditioning, Alaa Attar Dec 2015

Studying The Optimum Design Of Automotive Thermoelectric Air Conditioning, Alaa Attar

Dissertations

The remarkable amount of research being conducted on thermoelectrics gives the impression that this technology will have a bright future in power generation and temperature control systems. At the present time, thermoelectrics is applied widely for temperature control, but has not yet replaced conventional air-conditioning systems due to its lower performance. Currently, approximately 10% of annual vehicle fuel consumption corresponds to the air-conditioning system used to cool the vehicle cabin. Conventional air-conditioning systems cool the entire cabin; however, about 73% of a vehicle’s mileage occurs while the driver is the only occupant. These facts indicate the need for a single …


Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen Dec 2015

Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen

Masters Theses

Polymer electrolyte membrane electrolyzer cells (PEMECs), which are reverse PEM fuel cells (PEMFCs), are effective energy storage medium by producing hydrogen/oxygen from water using electricity from renewable energy sources. This is due in part because of its efficiency, high energy density, compact design, and large capacity. In a PEMEC, a liquid/gas diffusion layer (LGDL) is located between the catalyst layer and the current distributing flow field. The LGDL is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. Carbon materials (carbon paper or carbon cloth), typically used …


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker Sep 2015

Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker

USF Tampa Graduate Theses and Dissertations

The main purpose of this thesis is to investigate the ductility and application of titanium alloys, like titanium 6Al-4V, when used in aerospace fasteners compared to more conventional stainless steel aerospace fasteners such as A286. There have been concerns raised about the safe usability of titanium 6-4 in the aerospace industry due to its lack of strain hardening. However, there is a lack of data pertaining to this concern of safe usage which this thesis aims to address. Tensile tests were conducted to find the ductility indexes of these fasteners which quantify the amount of plastic to elastic elongation. From …


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu Aug 2015

Measurements Of Methyl Radicals And Temperatures By Using Coherent Microwave Rayleigh Scattering From Resonance Enhanced Multiphoton Ionization, Yue Wu

Doctoral Dissertations

This thesis includes two main parts: (I) The CH3[methyl radical] detection in methane/air flames and (II) the rotational temperature measurement of O2[molecular oxygen] in a variety of environments by using coherent microwave Rayleigh scattering from resonance enhanced multiphoton ionization (Radar REMPI).

In first the part, from Chapter I to Chapter III, the methyl radical detection and quantitative measurements have been conducted in hydrocarbon flame with one-dimensional and two-dimensional spatial-resolved concentration distribution. Due to the proximity of the argon resonance state (4+1 REMPI by 332.5 nm) with the CH3 state (2+1 REMPI by 333.6 nm), in …


On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo Aug 2015

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo

Dissertations

Meshless methods utilizing Radial Basis Functions~(RBFs) are a numerical method that require no mesh connections within the computational domain. They are useful for solving numerous real-world engineering problems. Over the past decades, after the 1970s, several RBFs have been developed and successfully applied to recover unknown functions and to solve Partial Differential Equations (PDEs).
However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matern functions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on the accuracy of numerical solutions, much effort has been devoted to developing methods for determining shape parameters which provide …


Nano Scale Mechanical Analysis Of Biomaterials Using Atomic Force Microscopy, Diganta Dutta Jul 2015

Nano Scale Mechanical Analysis Of Biomaterials Using Atomic Force Microscopy, Diganta Dutta

Mechanical & Aerospace Engineering Theses & Dissertations

The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed …


Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers Jun 2015

Analysis Of Vibroacoustic Properties Of Dimpled Beams Using A Boundary Value Model, Kyle R. Myers

Dissertations

Attention has been given recently to the use of dimples as a means of passively altering the vibroacoustic properties of structures. Because of their geometric complexity, previous studies have modeled dimpled structures using the finite element method. However, the dynamics of dimpled structures are not completely understood. The goal of this study is to provide a better understanding of these structures through the development of a boundary value model (BVM) using Hamilton's Variational Principle. The focus of this study is on dimpled beams, which represent the simplest form of a dimpled structure.

A general model of a beam with N …


Tesseract, Edgar Uribe, Vanessa Faune Jun 2015

Tesseract, Edgar Uribe, Vanessa Faune

Mechanical Engineering

PolySat is a student-run, Cal Poly research program in which students develop small satellites, known as CubeSats, to be sent into space. Since the start of the program in 2000, PolySat has developed eight 10cm x 10cm x10cm CubeSats. Recently, the team has developed two satellites of double, and triple, that size for NASA-KSC & AI-Solutions and the National Science Foundation. The recent volumetric expansion has been driven by high demand for further satellite functionality, which necessitates large power generation capabilities. To remain competitive in the growing CubeSat industry, PolySat must develop a platform that can provide enough power to …


Cfd Modeling Of The Flow Of Resin Into A Preform Mold Of Carbon Fibers, Caelan Lapointe Jun 2015

Cfd Modeling Of The Flow Of Resin Into A Preform Mold Of Carbon Fibers, Caelan Lapointe

Honors Theses

Sandwich structures are formed by separating load bearing face sheets with a light weight core material. This type of structural design is both strong and light, making for an extremely efficient structure. Sustainable sandwich structures made using face sheets of natural fiber mats and natural oil based resins separated by a fungal mycelia core. The vacuum infusion of resin into the fiber mats is investigated numerically using Star CCM+, a computational fluid dynamics (CFD) package. The methodology focuses on ease of use while emphasizing good modeling practices. The models generated are compared to the experimental results and provide a theoretical …


Supersonic Retro-Propulsion Computational Fluid Dynamics Analysis Applied To Future Mars Mission, Margarita Nataly Brandt May 2015

Supersonic Retro-Propulsion Computational Fluid Dynamics Analysis Applied To Future Mars Mission, Margarita Nataly Brandt

Doctoral Dissertations and Master's Theses

Supersonic Retro-Propulsion is one of the most promising emerging technologies being considered by NASA for use in future Mars missions. This new form of Entry Descent Landing has the potential to help increase the allowable payload mass currently constraining many science instruments and operations. Computational Fluid Dynamics was used to show the feasibility of supersonic retro - propulsion in Mars atmospheric conditions. The results presented show the SRP will be able to perform satisfactory using the same conditions that the Curiosity Rover was exposed to during its landing sequence. The plume expansion was analyzed for various cases, moving from free …


Methods Of Processing Kenaf Chopped Strand Mats For Manufacturing Test Specimens And Composite Structures, Joshua W. Heil May 2015

Methods Of Processing Kenaf Chopped Strand Mats For Manufacturing Test Specimens And Composite Structures, Joshua W. Heil

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Every year in the United States, 10 to 11 million vehicles reach the end of their life cycle. Nearly all of these go to a recycling facility. After the recycling process is complete an average of 25% of each vehicle, by weight, goes to waste. This demonstrates the need to use natural fibers in parts that could be recycled, like parts that can be made from kenaf. There are many reasons to consider using natural/bio-fiber composites (bio-composites). These reasons include human health and environmental factors as well as advantages that natural fibers have over fiberglass, such as: lower costs and …


Techno-Economic Feasibility And Life Cycle Assessment Of Dairy Effluent To Biofuel Via Hydrothermal Liquefaction, Hailey M. Summers May 2015

Techno-Economic Feasibility And Life Cycle Assessment Of Dairy Effluent To Biofuel Via Hydrothermal Liquefaction, Hailey M. Summers

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Delactosed whey permeate (delac) is a low valued by-product in the dairy industry with 90 million tons annually disposed of worldwide. Upgrading delac to bioproducts, specifically biofuel, has been demonstrated at laboratory scale through yeast fermentation. However, the large-scale environmental impact and economic feasibility of this process is yet to be quantified. Further research, focused on evaluating the sustainability, scalability and economic feasibility of the fermentation pathway, directs research and development to move the technology towards commercialization. The enclosed research incorporates biological experimentation with engineering systems modeling to evaluate the large-scale environmental impacts and economic feasibility of generating bioproducts from …


Parameterized Least-Squares Attitude History Estimation And Magnetic Field Observations Of The Auroral Spatial Structures Probe, Ryan J. Martineau May 2015

Parameterized Least-Squares Attitude History Estimation And Magnetic Field Observations Of The Auroral Spatial Structures Probe, Ryan J. Martineau

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

As charged particles from the Sun enter the Earth’s atmosphere and create the aurora borealis (Northern lights) and aurora australis (Southern lights), energy is transferred to the atmosphere. In order to better understand the energy transfer processes, the Auroral Spatial Structures Probe rocket was launched to make measurements in the active aurora. Several payloads were deployed by the rocket, each with sensors to measure the magnetic field and the electric field so that the way they change over time and in different positions could be observed. The measurements require accurate knowledge of the spacecraft orientation, and to that end this …


Modeling Of Environmentally Assisted Fatigue Crack Growth Behavior, Sree Phani Chandar Reddy May 2015

Modeling Of Environmentally Assisted Fatigue Crack Growth Behavior, Sree Phani Chandar Reddy

Dissertations

The formation of fatigue cracks and their propagation due to cyclic loading in metals have been a concern for more than hundred years. Since fatigue failure were first reported by the railroad industry in 1840s, tremendous progress has been achieved in understanding fatigue behavior of metals. But fatigue damage is still a concern due to its complex dependency on various environmental variable like humidity, temperature, time and corrosive environment. Although numerous theories and models have been proposed in the past, the effects of environment on fatigue crack growth (FCG) is not completely understood. This dissertation aims to shed light on …


Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier May 2015

Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier

Masters Theses

In this research turbine flow meters were studied, using computational fluid dynamics (CFD) modeling to the study effects of viscosity on the flow meters, across a wide range of operation, to improve our understanding and their performance. A three-dimensional computational model was created for a typical flow meter geometry. The work began with a steady state model to provide an acceptable initial condition for further simulations. These results were input into a transient model that has a rotating zone around the rotor to provide insight into the interaction between static and rotational structures. In order to automatically adjust the rotor …


An Experimental Study On The Effects Of Blade Row Interactions On Aerodynamic Loss Mechanisms In A Multistage Compressor, Natalie Rochelle Smith Apr 2015

An Experimental Study On The Effects Of Blade Row Interactions On Aerodynamic Loss Mechanisms In A Multistage Compressor, Natalie Rochelle Smith

Open Access Dissertations

While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. ^ This research examines the effects of blade …


Real-Time Rss-Based Indoor Navigation For Autonomous Uav Flight, Sangjun Lee Apr 2015

Real-Time Rss-Based Indoor Navigation For Autonomous Uav Flight, Sangjun Lee

Open Access Theses

Navigation for the autonomous flight of Unmanned Aerial Vehicles (UAVs) in an indoor space has attracted much attention recently. One of the main goals of an indoor navigation system is developing an alternative method to obtain position information that can replace or complement the global positioning system. While much research has focused on vision-based indoor navigation systems, this paper aims to develop a Received Signal Strength (RSS)-based navigation system, which is a more cost effective alternative. Then, the position and attitude of a UAV can be computed by the fusion of RSS measurements and measurements from the onboard inertial measurement …


Asymptotic Modelling Of A Thermopiezoelastic Anisotropic Smart Plate, Yufei Long Apr 2015

Asymptotic Modelling Of A Thermopiezoelastic Anisotropic Smart Plate, Yufei Long

Open Access Theses

Motivated by the requirement of modelling for space flexible reflectors as well as other applications of plate structures in engineering, a general anisotropic laminated thin plate model and a monoclinic Reissner-Mindlin plate model with thermal deformation, two-way coupled piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic method, without any ad hoc assumptions. Total potential energy contains strain energy, electric potential energy and energy caused by temperature change. Three-dimensional strain field is built based on the concept of warping function and decomposition of the rotation tensor. The feature of small thickness and large in-plane dimension of plate structure …


Delamination Of C/Pekk I-Beam Using Virtual Crack Closure Technique And Cohesive Zone Method, Greeshma Ramakrishna Apr 2015

Delamination Of C/Pekk I-Beam Using Virtual Crack Closure Technique And Cohesive Zone Method, Greeshma Ramakrishna

Open Access Theses

A damage study is conducted on a carbon epoxy/PEKK (poly-ether-ketone-ketone) thermoplastic composite I-Beam, with a pre crack of 100 mm modeled between the top flange and the filler (butt joint between filler and web). This project is in collaboration with Fokker Aerostructures, Netherlands and is part of the Thermoplastic Primary Aircraft Structure innovation program (TAPAS). The C/PEKK I-Beam is modeled after a section of the Gulfstream G650 aircraft's centre beam, which was previously a carbon fiber/epoxy hat-stiffened skin construction. The objective of the thesis is to identify if the crack propagates in the I-Beam within the load range that act …


Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera Jan 2015

Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera

Mechanical Engineering

CubeSats are an appealing platform for space exploration due to their low build and launch costs. Due to their small size, communication rates are often severely limited, preventing missions beyond low earth orbit. A low cost, high gain, high frequency antenna is needed to extend the capabilities of CubeSats.

The goal of the project was to design and build an axisymmetric parabolic antenna that could be deployed from a 10cm x 10cm x 15cm (1.5U) volume and operate at Ka band frequencies. The design selected consisted of an expanding perimeter truss supporting a tensioned mesh reflector. The perimeter truss was …


Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty Jan 2015

Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty

Graduate College Dissertations and Theses

In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities. …


Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.


Parameter Determination And Experimental Validation Of A Wire Feed Additive Manufacturing Model, Kannan Suresh Kumar Jan 2015

Parameter Determination And Experimental Validation Of A Wire Feed Additive Manufacturing Model, Kannan Suresh Kumar

Masters Theses

“Laser metal deposition is an additive manufacturing method with great scope and robustness. The wire fed additive manufacturing method has great opportunities in space applications and other zero gravity manufacturing processes. Process parameters play an important role in controlling the complex phenomenon and obtaining an ideal manufactured part. These parameters can be efficiently determined using simulation tools which are highly essential in visualizing real world experiments, therefore saving time and experimental costs. The objective of this study is to develop a transient 3D model of laser aided wire feed metal deposition which realizes the heat transfer and fluid flow behavior …


Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott Jan 2015

Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott

Dissertations, Master's Theses and Master's Reports

With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no …


High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang Jan 2015

High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang

Theses and Dissertations--Mechanical Engineering

A weakly ionized hypersonic flow solver for the simulation of reentry flow is firstly developed at the University of Kentucky. This code is the fluid dynamics module of known as Kentucky Aerothermodynamics and Thermal Response System (KATS). The solver uses a second-order finite volume approach to solve the laminar Navier– Stokes equations, species mass conservation and energy balance equations for flow in chemical and thermal non-equilibrium state, and a fully implicit first-order backward Euler method for the time integration. The hypersonic flow solver is then extended to account for very low Mach number flow using the preconditioning and switch of …


Magnus Effect In Duct Flow, Cameron W. Clarke, Jesse S. Batko, Kenneth W. Smith Jr. Jan 2015

Magnus Effect In Duct Flow, Cameron W. Clarke, Jesse S. Batko, Kenneth W. Smith Jr.

Williams Honors College, Honors Research Projects

The following research paper details the preliminary research carried out by this team. The project was originally conceived to determine if Magnus Lift could be utilized in an unconventional way to assist rockets during takeoff. Several conceptual designs were proposed, but the idea was scrapped when it became apparent that the team would not be able to generate the desired lift without inducing significant amounts of drag and additional weight on a rocket. Instead, the team focused on researching an interesting topic that hasn’t been previously explored: Magnus lift on a cylinder within a duct. An experimental procedure that could …