Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Dynamic Pulse Buckling Of Columns With Viscous Damping, Murli Kadandale Dec 1995

Dynamic Pulse Buckling Of Columns With Viscous Damping, Murli Kadandale

Masters Theses

This is a study of dynamic pulse buckling of columns with viscous damping. The differential equations of motion were obtained using the Bemoulli-Navier hypothesis. The effects of axial and rotary inertia were included in the analysis. The Voigt-Kelvin model for a viscoelastic material is used. The Finite Difference Method was employed to solve the differential equations of motion. First columns without geometrical imperfections were studied, and a correlation between the damping modulus and the more familiar damping ratio was obtained. Then beams with initial geometrical imperfection were studied. A suitable dynamic buckling criterion was defined. It was observed that viscous …


An Experimental Investigation Of Wall Cooling Effects On Hypersonic Boundary Layer Stability In A Quiet Wind Tunnel, Alan E. Blanchard Oct 1995

An Experimental Investigation Of Wall Cooling Effects On Hypersonic Boundary Layer Stability In A Quiet Wind Tunnel, Alan E. Blanchard

Mechanical & Aerospace Engineering Theses & Dissertations

One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and …


Buckling Analysis And Optimum Design Of Multidirectionally Stiffened Composite Curved Panel, Navin R. R. Jaunky Oct 1995

Buckling Analysis And Optimum Design Of Multidirectionally Stiffened Composite Curved Panel, Navin R. R. Jaunky

Mechanical & Aerospace Engineering Theses & Dissertations

Continuous filament grid-stiffened structure is a stiffening concept that combines structural efficiency and damage tolerance. However, buckle resistant design optimization of such structures using a finite element method is expensive and time consuming due to the number of design parameters that can be varied. An analytical optimization procedure which is simple, efficient and supports the preliminary design of grid-stiffened structures for application to combined loading cases is needed.

An analytical model for a general grid-stiffened curved panel is developed using an improved smeared theory with a first-order, shear-deformation theory to account for transverse shear flexibilities and local skin-stiffener interaction effects. …


Numerical Investigation Of Shock-Induced Combustion Past Blunt Projectiles, Jagjit K. Ahuja Jul 1995

Numerical Investigation Of Shock-Induced Combustion Past Blunt Projectiles, Jagjit K. Ahuja

Mechanical & Aerospace Engineering Theses & Dissertations

A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. In this approach, the bow shock represents a boundary of the computational domain and is treated as a discontinuity across which Rankine-Hugoniot conditions are applied. All interior details of …


Dynamic Unstructured Method For Prescribed And Aerodynamically Determined Relative Moving Boundary Problems, Kamakhya Prasad Singh Jul 1995

Dynamic Unstructured Method For Prescribed And Aerodynamically Determined Relative Moving Boundary Problems, Kamakhya Prasad Singh

Mechanical & Aerospace Engineering Theses & Dissertations

A new methodology is developed to simulate unsteady flows about prescribed and aerodynamically determined moving boundary problems. The method couples the fluid dynamics and rigid-body dynamics equations to capture the time-dependent interference between stationary and moving boundaries. The unsteady, compressible, inviscid (Euler) equations are solved on dynamic, unstructured grids by an explicit, finite-volume, upwind method. For efficiency, the grid adaptation is performed within a window around the moving object. The Eulerian equations of the rigid-body dynamics are solved by a Runge-Kutta method in a non-inertial frame of reference. The two-dimensional flow solver is validated by computing the flow past a …


Effects Of Blowing Ratios On Heat Transfer To The Throat Region Of A Porous-Walled Nozzle, Fu-Jung Chen Jun 1995

Effects Of Blowing Ratios On Heat Transfer To The Throat Region Of A Porous-Walled Nozzle, Fu-Jung Chen

Theses and Dissertations

The effects of transpiration cooling on heat transfer in the throat region of a porous-walled nozzle were investigated. The experiments were performed in the AFIT low speed shock tube fitted with a Mach 2 nozzle. A blowing region was limited to the area from 1.3 cm prior to the throat to 1.2 cm downstream of the throat. The blowing ratios from -0.0002 (suction) to 0.0117 (blowing) of the main stream flow were studied. Heat flux data were taken from both sides of the nozzle. One side was transpiration cooled by secondary air injection through a porous wall, while the other …


Advanced Rover Chassis, Eric Alan Poulson, Collin Lewis, Todd Graves May 1995

Advanced Rover Chassis, Eric Alan Poulson, Collin Lewis, Todd Graves

Undergraduate Honors Capstone Projects

Background:

The six wheeled rover vehicle detailed in this design is intended as an upgrade test bed for the sensor array and autonomous navigation algorithms in use by Utah State University's Center for Self-Organizing and Intelligent Systems (CSOIS). The CSOIS's sensor suite can successfully detect and avoid unnavigable obstacles up to five vehicle lengths in front of the vehicle. The center presently uses a modified RC type chassis and only supports two wheel drive. This chassis was adequate to bring the CSOIS's algorithms to a proof-of-principles state, but in order to place the system in any practical application, a full …


Aerodynamic Design Optimization With Consistently Discrete Sensitivity Derivatives Via The Incremental Iterative Method, Vamshi M. Korivi Apr 1995

Aerodynamic Design Optimization With Consistently Discrete Sensitivity Derivatives Via The Incremental Iterative Method, Vamshi M. Korivi

Mechanical & Aerospace Engineering Theses & Dissertations

In this study which involves advanced fluid-flow codes, an incremental iterative formulation (also known as the "delta" or "correction" form), together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently …


Finite Element Nonlinear Random Response Of Composite Panels Of Arbitrary Shape To Acoustic And Thermal Loads Applied Simultaneously, Roger R. Chen Apr 1995

Finite Element Nonlinear Random Response Of Composite Panels Of Arbitrary Shape To Acoustic And Thermal Loads Applied Simultaneously, Roger R. Chen

Mechanical & Aerospace Engineering Theses & Dissertations

The nonlinear random response of composite plates to the simultaneously applied, combined acoustic/thermal loads are investigated in this dissertation. A finite element formulation for the nonlinear random response is developed. The three-node Mindlin plate element with improved transverse shear is extended and employed. The extension includes the development of the thermal geometric matrix, the mass matrix, the first- order and second-order nonlinear stiffness matrices, and the thermal and mechanical load vectors. An innovative solution procedure has been created which is believed to be the first attempt to analyze nonlinear random response of complex composite panels subjected to simultaneous acoustic and …