Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski Jun 2012

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol Jun 2012

Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol

Mechanical Engineering

In 1989 Cal Poly’s Da Vinci III was the first human powered helicopter (HPH) to achieve flight; our goal is to research and develop a new airframe for the next generation Da Vinci. This report outlines a brief history of human powered flight and details a method of constructing for the airframe. An optimized airframe geometry was also researched and is explained in detail.


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera Jun 2012

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


Aerodynamic Test Platform For Human Powered Vehicle (Hpv), Spencer Wangerin, Spencer Lillywhite, Colburn Davis Jun 2012

Aerodynamic Test Platform For Human Powered Vehicle (Hpv), Spencer Wangerin, Spencer Lillywhite, Colburn Davis

Mechanical Engineering

The Aerodynamic Test Platform (ATP) for the Cal Poly HPV Club is a system that was designed by Cal Poly mechanical engineering students to measure aerodynamic characteristics of a human-powered vehicle (HPV). The HPV team desired a system that could quantify the lift, drag, and other aerodynamic qualities of a full scale HPV at various orientations in oncoming airflow. Established methods for determining aerodynamic characteristics include computational fluid dynamics (CFD) and wind tunnel testing of scaled models. The ATP was devised to simulate the test results given by a full-scale wind tunnel without requiring a wind tunnel large enough to …


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez Jun 2012

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen May 2012

Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen

Aerospace Engineering

This project attempts to simulate accurately the thermal conductivity of honeycomb panels in the normal direction. Due to the large empty space of the honeycomb core, the thermal radiation mode of heat transfer was modeled along with conduction. Using Newton’s Method to solve for a steady state model of heat moving through the honeycomb panel, the theoretical effective thermal conduction of the honeycomb panel was found, ranging from 1.03 to 1.07 Q/m/K for a heat input of 2.5 W to 11.8 W. An experimental model was designed to test the theoretical results, using a cold plate and a heat plate …


Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez Mar 2012

Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez

Aerospace Engineering

Composite materials are engineered by combining two or more constituent materials with significantly different physical or chemical properties in such a way that the constituents are still distinguishable, and not fully blended. Due to today’s high rising prices of gasoline and aviation fuel costs, many manufacturers have turned to the use of lightweight composites in their designs due to the advantages of the composite material, which include outstanding strength, excellent durability, high heat resistance, and significant weight reduction that the composite material properties hold. The purpose of this project is to design and construct a composite structure for an electrically-powered …