Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

Mechanical and Aerospace Engineering Faculty Research & Creative Works

2015

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Coalescence-Induced Jumping Of Nanoscale Droplets On Super-Hydrophobic Surfaces, Zhi Liang, Pawel Keblinski Oct 2015

Coalescence-Induced Jumping Of Nanoscale Droplets On Super-Hydrophobic Surfaces, Zhi Liang, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Coalescence-Induced Jumping of Tens of Microns Size Droplets on Super-Hydrophobic Surfaces Has Been Observed in Both Experiments and Simulations. However, Whether the Coalescence-Induced Jumping Would Occur for Smaller, Particularly Nanoscale Droplets, is an Open Question. using Molecular Dynamics Simulations, We Demonstrate that in Spite of the Large Internal Viscous Dissipation, Coalescence of Two Nanoscale Droplets on a Super-Hydrophobic Surface Can Result in a Jumping of the Coalesced Droplet from the Surface with a Speed of a Few M/s. Similar to the Coalescence-Induced Jumping of Microscale Droplets, We Observe that the Bridge between the Coalescing Nano-Droplets Expands and Impacts the …


Molecular Simulations And Lattice Dynamics Determination Of Stillinger-Weber Gan Thermal Conductivity, Zhi Liang, Ankit Jain, Alan J.H. Mcgaughey, Pawel Keblinski Sep 2015

Molecular Simulations And Lattice Dynamics Determination Of Stillinger-Weber Gan Thermal Conductivity, Zhi Liang, Ankit Jain, Alan J.H. Mcgaughey, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Bulk Thermal Conductivity of Stillinger-Weber (SW) Wurtzite GaN in the [0001] Direction at a Temperature of 300 K is Calculated using Equilibrium Molecular Dynamics (EMD), Non-Equilibrium MD (NEMD), and Lattice Dynamics (LD) Methods. While the NEMD Method Predicts a Thermal Conductivity of 166 ± 11 W/m·K, Both the EMD and LD Methods Predict Thermal Conductivities that Are an Order of Magnitude Greater. We Attribute the Discrepancy to Significant Contributions to Thermal Conductivity from Long-Mean Free Path Phonons. We Propose that the Grüneisen Parameter for Low-Frequency Phonons is a Good Predictor of the Severity of the Size Effects in NEMD …


Slip Length Crossover On A Graphene Surface, Zhi Liang, Pawel Keblinski Apr 2015

Slip Length Crossover On A Graphene Surface, Zhi Liang, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using Equilibrium and Non-Equilibrium Molecular Dynamics Simulations, We Study the Flow of Argon Fluid above the Critical Temperature in a Planar Nanochannel Delimited by Graphene Walls. We Observe that, as a Function of Pressure, the Slip Length First Decreases Due to the Decreasing Mean Free Path of Gas Molecules, Reaches the Minimum Value When the Pressure is Close to the Critical Pressure, and Then Increases with Further Increase in Pressure. We Demonstrate that the Slip Length Increase at High Pressures is Due to the Fact that the Viscosity of Fluid Increases Much Faster with Pressure Than the Friction Coefficient between …


An Interoperable System For Automated Diagnosis Of Cardiac Abnormalities From Electrocardiogram Data, Thidarat Tinnakornsrisuphap, Richard E. Billo Mar 2015

An Interoperable System For Automated Diagnosis Of Cardiac Abnormalities From Electrocardiogram Data, Thidarat Tinnakornsrisuphap, Richard E. Billo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Electrocardiogram (ECG) data are stored and analyzed in different formats, devices, and computer platforms. As a result, ECG data from different monitoring devices cannot be displayed unless the user has access to the proprietary software of each particular device. This research describes an ontology and encoding for representation of ECG data that allows open exchange and display of ECG data in a web browser. The ontology is based on the Health Level Seven (HL7) medical device communication standard. It integrates ECG waveform data, HL7 standard ECG data descriptions, and cardiac diagnosis rules, providing a capability to both represent ECG waveforms …