Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick Aug 2020

Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick

Mechanical and Aerospace Engineering Faculty Publications

The study focuses on modeling and simulations of sodium-sCO2 intermediary compact heat exchangers for sodium-cooled fast reactors (SFR). A simplified 1-D analytical model was developed in companion with a 3-D CFD model. Using classic heat transfer correlations for Nusselt number, some simulation results using the 1-D model have achieved reasonable match with the CFD simulation results for longer channels (i.e., 40 cm and 80 cm). However, for short channel (10 cm) when axial conduction within the sodium fluid is significant, the 1-D model significantly over-predicted the heat transfer effectiveness. By incorporating the temperature-jump model, the 1-D model can extend its …


Evaluation Of Flux Correction On Three-Dimensional Strand Grids With An Overset Cartesian Grid, Dalon G. Work May 2017

Evaluation Of Flux Correction On Three-Dimensional Strand Grids With An Overset Cartesian Grid, Dalon G. Work

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Simulations of fluid flows over complex geometries are typically solved using a solution technique known as the overset meshing method. The geometry is meshed using grid types appropriate to the local geometry in a patchwork fashion, rather than meshing the entire geometry with one type of mesh. The strand-Cartesian approach is a simplification of this process. While high-order accurate solvers on Cartesian grids are simple to implement, strand grids are usually restricted to second-order accuracy, resulting in poor quality solutions. Flux correction is a high-order accurate solution method, specifically designed for use on strand grids. The flux correction method on …


Development Of A Three-Dimensional High-Order Strand-Grids Approach, Oisin Tong May 2016

Development Of A Three-Dimensional High-Order Strand-Grids Approach, Oisin Tong

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The strand-Cartesian grid approach is a unique method of generating and computing fluid dynamic simulations. The strand-Cartesian approach provides highly desirable qualities of fully-automatic grid generation and high accuracy. This work focuses on development of a high-accuracy methodology (high-order scheme) on strand grids for two and three dimensions.

In this work, the high-order scheme is extended to high-Reynolds number computations in both two and three dimensions with the Spalart-Allmaras turbulence model and the Menter SST turbulence model. In addition, a simple limiter is explored to allow the high-order scheme to accurately predict discontinuous flows.

Extensive verification and validation is conducted …