Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Studies Of Flowfields And Dynamic Stability Characteristics Of A Quadrotor, Engin Baris Oct 2023

Studies Of Flowfields And Dynamic Stability Characteristics Of A Quadrotor, Engin Baris

Mechanical & Aerospace Engineering Theses & Dissertations

Electric multirotor air vehicles have become a pervasive technology and research topic in industry, academia, and daily life, and small quadrotors are one of the most preferred designs in the multirotor marketplace. However, the configuration of the quadrotors makes aerodynamic interaction effects one of the key factors of the vehicle performance in both hover and non-axial forward flight conditions.

In the present work, aerodynamic characteristics of the cross-configured small quadrotor in hover, edgewise, and maneuvering flight modes were investigated in detail by performing static and dynamic wind tunnel tests at various RPM levels, wind speeds, pitch and yaw angles, and …


A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis May 2022

A Study Of Asymmetric Supersonic Wind Tunnel Nozzle Design, Brittany A. Davis

Mechanical & Aerospace Engineering Theses & Dissertations

Achieving higher Mach numbers for private and commercial flight is a growing interest in the aerospace community. To qualify vehicles prior to flight, tests must be run in wind tunnels. Asymmetric wind tunnel nozzles are of continuing interest to the aerospace community due to their ability to change throat geometry, allowing for a range of Mach numbers to be achieved that encompasses all of the supersonic regime. The sliding block wind tunnel at Old Dominion University (ODU) is designed for a range of Mach numbers from about 1.8 to 3.5 but is limited to an upper limit of 2.8 by …


Analysis Of A Non-Equilibrium Vortex Pair As Aircraft Trailing Vortices, Manuel Ayala Jul 2021

Analysis Of A Non-Equilibrium Vortex Pair As Aircraft Trailing Vortices, Manuel Ayala

Mechanical & Aerospace Engineering Theses & Dissertations

Shortly after the roll-up evolution of the vortex sheet behind the wings of an aircraft, a coherent counter-rotating vortex pair emerges. Presence of this vortex pair in the downstream of an aircraft, creates unsafe conditions for other aircraft, especially near airport runways. Fundamental knowledge of the physics that govern the formation, duration and dissipation of aircraft wake vortices is desirable in order to improve aircraft operational safety. This study uses non-equilibrium pressure theory to develop an accurate model describing the physical behavior of the vortex pair created by an aircraft in the early to mid-field vortex regime. An isolated aircraft …


Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin Jan 2010

Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin

Mechanical & Aerospace Engineering Theses & Dissertations

An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle …


Experimental Investigation Of Active Control Of Bluff Body Vortex Shedding, Ilteris Koc Jan 2008

Experimental Investigation Of Active Control Of Bluff Body Vortex Shedding, Ilteris Koc

Mechanical & Aerospace Engineering Theses & Dissertations

Mean and fluctuating forces acting on a body are strongly related to vortex shedding generated behind it. Therefore, it is possible to obtain substantial reductions of at least the unsteady forces if vortex shedding is controlled or its regularity is reduced. While conventional active flow control methods are mainly concerned with direct interaction with, and alteration of, the mean flow about a body, modern techniques involve altering existing flow instabilities using relatively small inputs to obtain large-scale changes of mean flows. Aerodynamic flow control may be intended to delay or suppress boundary layer separation through creation of a boundary layer …


External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar Apr 2002

External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar

Mechanical & Aerospace Engineering Theses & Dissertations

Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite.

The present study aims to simulate …


Vortex Wake And Exhaust Plume Interaction, Including Ground Effect, Ihab Gaber Adam Jul 1998

Vortex Wake And Exhaust Plume Interaction, Including Ground Effect, Ihab Gaber Adam

Mechanical & Aerospace Engineering Theses & Dissertations

Computational modeling and studies of the near-field wake-vortex turbulent flows, far-field turbulent wake-vortex/exhaust-plume interaction for subsonic and High Speed Civil Transport (HSCT) airplane, and wake-vortex/exhaust-plume interaction with the ground are carried out. The three-dimensional, compressible Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The turbulence models of Baldwin and Lomax, one-equation model of Spalart and Allmaras and two-equation shear stress transport model of Menter are implemented with the RANS solver for turbulent-flow modeling.

For the near-field study, computations are carried out on a fine grid for a rectangular wing with a NACA-0012 airfoil section and …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …


Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas Apr 1996

Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas

Mechanical & Aerospace Engineering Theses & Dissertations

A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point …


Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan Jul 1988

Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan

Mechanical & Aerospace Engineering Theses & Dissertations

Computations have been performed to simulate turbulent supersonic, transonic, and subsonic flows past three-dimensional deep, transitional, and shallow cavities. Simulation of these self sustained oscillatory flows has been generated through time accurate solutions of Reynolds averaged full Navier-Stokes equations using the explicit MacCormack scheme. The Reynolds stresses have been modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses have been performed for the instantaneous pressure values on the cavity floor. Comparison with experimental data is made in terms of the mean …