Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Simulation Of Whistle Noise Using Computational Fluid Dynamics And Acoustic Finite Element Simulation, Jiawei Liu Jan 2012

Simulation Of Whistle Noise Using Computational Fluid Dynamics And Acoustic Finite Element Simulation, Jiawei Liu

Theses and Dissertations--Mechanical Engineering

The prediction of sound generated from fluid flow has always been a difficult subject due to the nonlinearities in the governing equations. However, flow noise can now be simulated with the help of modern computation techniques and super computers. The research presented in this thesis uses the computational fluid dynamics (CFD) and the acoustic finite element method (FEM) in order to simulate the whistle noise caused by vortex shedding. The acoustic results were compared to both analytical solutions and experimental results to better understand the effects of turbulence models, fluid compressibility, and wall boundary meshes on the acoustic frequency response. …


Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann Jan 2012

Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann

Theses and Dissertations--Mechanical Engineering

UAV development and usage has increased dramatically in the last 15 years. In this time frame the potential has been realized for deployable UAVs to the extent that a new class of UAV was defined for these systems. Inflatable wing UAVs provide a unique solution for deployable UAVs because they are highly packable (some collapsing to 5-10% of their deployed volume) and have the potential for the incorporation of wing shaping. In this thesis, aerodynamic coefficients and aileron effectiveness were derived from the equations of motion of aircraft as necessary parameters for autonomous flight. A wind tunnel experiment was performed …


Root Locus Techniques With Nonlinear Gain Parameterization, Brandon Wellman Jan 2012

Root Locus Techniques With Nonlinear Gain Parameterization, Brandon Wellman

Theses and Dissertations--Mechanical Engineering

This thesis presents rules that characterize the root locus for polynomials that are nonlinear in the root-locus parameter k. Classical root locus applies to polynomials that are affine in k. In contrast, this thesis considers polynomials that are quadratic or cubic in k. In particular, we focus on constructing the root locus for linear feedback control systems, where the closed-loop denominator polynomial is quadratic or cubic in k. First, we present quadratic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is quadratic in k. Next, we develop cubic root-locus rules …