Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Materials Science and Engineering

Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes May 2023

Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes

Graduate Theses & Non-Theses

Since its invention in 1981, the cold spray (CS) additive manufacturing (AM) process has been studied and optimized to produce well-adhered, dense material coatings. CS can operate at a wide range of temperatures if the feed material remains in a solid state. Copper and zinc were studied to characterize and understand the effects of heating element voltage, travel speed, and standoff distance on deposit porosity, grain size, microhardness, and coating thickness. Samples were sprayed on 3.2 mm x 25 mm x 150 mm 6061 aluminum substrates. Sections were taken from the middle of the samples to represent steady-state conditions. Sample …


Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer Aug 2019

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models are useful to predict, understand and describe the behaviour of different cementitious-based systems. They are indispensable for undertaking long-term performance and service life predictions for existing and new products for generating quantitative data in the move towards more sustainable cements while optimising natural resources. One such application is the development of cement-based thermoelectric applications.

HYDCEM is a new model to predict the phase assemblage, degree of hydration, heat release and changes in pore solution chemistry over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, is aimed at …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas Jan 2019

Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas

Graduate Theses, Dissertations, and Problem Reports

The present thesis makes a connection between spatially resolved strain correlations and material processing history. Such correlations can be used to infer and classify prior deformation history of a sample at various strain levels with the use of Machine Learning approaches. A simple and concrete example of uniaxially compressed crystalline thin films of various sizes, generated by two-dimensional discrete dislocation plasticity simulations is examined. At the nanoscale, thin films exhibit yield-strength size effects with noisy mechanical responses which create an interesting challenge for the application of Machine Learning techniques. Moreover, this thesis demonstrates the prediction of the average mechanical responses …


Effect Of Er On Microstructure And Electrochemical Performance Of Al–Zn–In Anode, Zhengbing Xu Oct 2016

Effect Of Er On Microstructure And Electrochemical Performance Of Al–Zn–In Anode, Zhengbing Xu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Effect Of Heat Input On Microstructure And Formability Of Dp980 Steel Welded Joints By Fiber Laser Welding, Qian Sun Oct 2016

Effect Of Heat Input On Microstructure And Formability Of Dp980 Steel Welded Joints By Fiber Laser Welding, Qian Sun

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Ferromagnetic Shape Memory Alloy Microwires, Xuexi Zhang, Mingfang Qian, Hehe Zhang, Lin Geng Oct 2016

Ferromagnetic Shape Memory Alloy Microwires, Xuexi Zhang, Mingfang Qian, Hehe Zhang, Lin Geng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Finite Element Simulation And Experimental Study Of The Effect Of Combining Ultrasonic Vibration With Ecap Process On Pure Aluminum 1050, Saeed Bagherzadeh, Yanfei Liu, Karen Abrinia, Qingyou Han Oct 2016

Finite Element Simulation And Experimental Study Of The Effect Of Combining Ultrasonic Vibration With Ecap Process On Pure Aluminum 1050, Saeed Bagherzadeh, Yanfei Liu, Karen Abrinia, Qingyou Han

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Phase Formation And Hydrogen Ordering In Yttrium-Hydrogen System, Ke Wang, Jason Hattrick-Simpers, Leonid Bendersky Mar 2015

Phase Formation And Hydrogen Ordering In Yttrium-Hydrogen System, Ke Wang, Jason Hattrick-Simpers, Leonid Bendersky

Jason R. Hattrick-Simpers

No abstract provided.


Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang Jan 2015

Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang

Theses and Dissertations--Chemical and Materials Engineering

Nanoporous (np) materials with pore size below 100 nano-meters exist naturally in biological and mineral structures, and synthetic np materials have been used industrially for centuries. Np materials have attracted significant research interest in recent decades, as the development of new characterization techniques and nanotechnology allow the observation and design of np materials at a new level. This study focuses on two np materials: nanoporous silicon (np-Si) and nanoporous palladium (np-Pd).

Silicon (Si), because of its high capacity to store lithium (Li), is increasingly becoming an attractive candidate as anode material for Li ion batteries (LIB). One significant problem with …


Structural, Magnetic And Microstructural Studies Of Composition-Modified Sm-Co Ribbons, Xiujuan Jiang May 2014

Structural, Magnetic And Microstructural Studies Of Composition-Modified Sm-Co Ribbons, Xiujuan Jiang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

There is an increasing interest in developing desirable microstructures in hard magnetic materials. Sm-Co-based magnets, bearing superior intrinsic magnetic properties, are good candidates for further development. Two Sm-Co-based alloys, (Sm12Co88)100-x-yCryCx (taking SmCo7 phase) and SmCo4-xFexB (a derivative of SmCo5 phase), were produced using melt-spinning technique. The magnetic properties are correlated to the structural and microstructural properties.

Within the SmCo7 stoichiometry, cumulative effects of Cr and C additions on the structural and magnetic properties have been investigated. Experimental results have shown that these additions along …


Microstructure And Work Function Of Dispenser Cathode Coatings: Effects On Thermionic Emission, Phillip D. Swartzentruber Jan 2014

Microstructure And Work Function Of Dispenser Cathode Coatings: Effects On Thermionic Emission, Phillip D. Swartzentruber

Theses and Dissertations--Chemical and Materials Engineering

Dispenser cathodes emit electrons through thermionic emission and are a critical component of space-based and telecommunication devices. The emission of electrons is enhanced when coated with a refractory metal such as osmium (Os), osmium-ruthenium (Os-Ru), or iridium (Ir). In this work the microstructure, thermionic emission, and work function of thin film Os-Ru coatings were studied in order to relate microstructural properties and thermionic emission.

Os-Ru thin film coatings were prepared through magnetron sputtering and substrate biasing to produce films with an array of preferred orientations, or texture. The effect of texture on thermionic emission was studied in detail through closely-spaced …


A Semi-Empirical Model To Predict The Acoustic Behaviour Of Fully And Partially Reticulated Polyurethane Foams Based On Microstructure Properties, Olivier Doutres Ph.D., Noureddine Atalla Apr 2012

A Semi-Empirical Model To Predict The Acoustic Behaviour Of Fully And Partially Reticulated Polyurethane Foams Based On Microstructure Properties, Olivier Doutres Ph.D., Noureddine Atalla

Olivier Doutres Ph.D.

This work investigates the links between the microstructure of polyurethane foams and their sound absorbing efficiency, and more specifically the effect of membranes closing the cells. In a previous work, the authors proposed a semi-empirical approach to link the foam microstructure properties, i.e. reticulation rate, strut length and thickness, with its non-acoustic parameters. The study was based on the complete characterization of 15 isotropic polyurethane foams with various cell sizes and reticulation rates (i.e. open pore content). This paper proposes a validation of this semi-empirical model using 3 new polyurethane foams, not used in the first characterization set. More importantly, …