Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Materials Science and Engineering

Silver Oxide-Graphene Sensor For Hydrogen Peroxide, Austin D. Scherbarth, L Stanciu Oct 2013

Silver Oxide-Graphene Sensor For Hydrogen Peroxide, Austin D. Scherbarth, L Stanciu

The Summer Undergraduate Research Fellowship (SURF) Symposium

A nonenzymatic, amperometric sensor for Hydrogen Peroxide (H2O2) was designed by drop coating glassy carbon electrodes (GCEs) with Silver Oxide (Ag2O). Combining Ag2O with Graphene Oxide and a polymer, PEDOT, was also attempted in order to increase stability and electrochemical properties. Using metal oxides along with Graphene Oxide for sensors has been done quite a bit, but Ag2O itself has not been research extensively. So, in order to produce the best H2O2 sensor, the configuration of all components had to be optimized. Three different Ag2O …


Fe, Co And Ni Adatoms Adsorbed On Silicene: A Dft Study, Kent Gang '14, Siva Gangavarapu '14, Matthew Deng '14, Glenn W. "Max" Mcgee, Ron Hurlbut, Michael Lee Dao Kang, Sean Ng Peng Nam, Harman Johll, Tok Eng Soon Jul 2013

Fe, Co And Ni Adatoms Adsorbed On Silicene: A Dft Study, Kent Gang '14, Siva Gangavarapu '14, Matthew Deng '14, Glenn W. "Max" Mcgee, Ron Hurlbut, Michael Lee Dao Kang, Sean Ng Peng Nam, Harman Johll, Tok Eng Soon

Student Publications & Research

Two-dimensional materials have attracted much research attention given their intriguing properties. The latest member of this class of materials is silicene. In this work, we investigate the adsorption of Fe, Co and Ni adatoms on silicene using plane-wave density functional theory calculations within the Perdew-Burke-Ernzerhof parameterization of the generalized gradient approximation for the exchange-correlation potential. In particular, we calculate the binding energy, magnetization, and projected electronic configurations of these adatoms adsorbed at different sites on the silicene. Our calculations show that the hole site (i.e. in the centre of a hexagonal-like arrangement of Si atoms) is the most stable configuration …


Enhanced 3-Dimensional Carbon Nanotube Based Anodes For Li-Ion Battery Applications, Chi Won Kang Jun 2013

Enhanced 3-Dimensional Carbon Nanotube Based Anodes For Li-Ion Battery Applications, Chi Won Kang

FIU Electronic Theses and Dissertations

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg-1). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode …


Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui May 2013

Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui

Theses and Dissertations

Tin dioxide (SnO2) is a well–known gas sensing material, but it becomes sensitive only at elevated temperatures (e.g., above 200 °C). Nanoparticles (NPs) combined with nanocarbons, such as carbon nanotubes (CNTs) and graphene, form a new class of hybrid nanomaterials that can exhibit fascinating gas sensing performance due to tunable electron transfer between NPs and nanocarbons induced by gas adsorption. Indeed, sensors made of SnO2 NPs&ndascoated CNTs have shown outstanding room–temperature sensing performance to various gases, including those that are undetectable by either SnO2 or CNTs alone.

The objectives of this dissertation study are to synthesize …


Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson May 2013

Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson

Theses and Dissertations

Graphene-based materials are becoming an astoundingly promising choice for many relevant technological and environmental applications. Deriving graphene from the reduction of graphene oxide (GO) is becoming a popular and inexpensive route toward the synthesis of these materials. While the desired product from GO reduction is pristine graphene, defects and residual oxygen functional groups inherited from the parent GO render reduced graphene oxide (RGO) distinct from graphene. In this work, the structure and bonding for GO and RGO is investigated to the end of a working understanding of the composition and properties of these materials. In situ selected area electron diffraction …


Synthesis Of Graphene And Its Applications For Dye-Sensitized Solar Cells, Hui Wang Jan 2013

Synthesis Of Graphene And Its Applications For Dye-Sensitized Solar Cells, Hui Wang

Dissertations, Master's Theses and Master's Reports - Open

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells.

This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional …


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …