Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2009

PDF

Semiconductor and Optical Materials

Articles 1 - 16 of 16

Full-Text Articles in Materials Science and Engineering

Optical Properties Of Semiconducting Boron Carbide For Neutron Detection Applications, Ravi B. Billa Dec 2009

Optical Properties Of Semiconducting Boron Carbide For Neutron Detection Applications, Ravi B. Billa

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Solid state neutron detection devices based on semiconducting boron carbide have the potential for nearly ideal neutron detection effciency for thermal neutrons. The present work is focused on characterizing optical properties of this semiconducting boron carbide material as a step in further development of the material for neutron detection and other applications.

Semiconducting boron carbide films were grown on silicon substrates using plasma enhanced chemical vapor deposition and their optical properties were characterized using variable angle spectroscopic ellipsometry over a wide spectral range, from mid-infrared to vacuum-ultraviolet wavelengths. The effects of deposition substrate temperature and of post-deposition heat treatments on …


Enhanced Visible Light Photoelectrochemical Performances With Nitrogen Doped Tio_2 Nanowire Arrays, Xiao-Jun Lv, Yue-Ming Li, Hao Zhang, Da Chen, Hensel Jennifer, Z Zhang Jin, Jing-Hong Li Nov 2009

Enhanced Visible Light Photoelectrochemical Performances With Nitrogen Doped Tio_2 Nanowire Arrays, Xiao-Jun Lv, Yue-Ming Li, Hao Zhang, Da Chen, Hensel Jennifer, Z Zhang Jin, Jing-Hong Li

Journal of Electrochemistry

Self-organized anodic anatase TiO2nanowire arrays doped with nitrogen have been successfully fabri-cated and their photoelectrochemical(PEC) properties have been characterized and found to be substantially im-proved compared to undoped nanowires or commercial P25 nanoparticles.Photocurrent measured with monochro-matic incident light showed that the incident photon-to-current efficiency(IPCE,%) values of nanowire arrayelectrodes with or without N-doping were obviously higher than that of commercial P25 nanoparticle electrodes,and nitrogen-doped TiO2nanowire arrays(NTNA) had noticeable absorption in the visible region.The NTNAelectrodes showed the highest photocurrent density and power conversion efficiency under 100 mW/cm2visiblelight illumination.A maximumolphotoconversion efficiency of 0.52% was achieved for the NTNA sample at anapplied potential of …


Feasibility Of Ellipsometric Sensor Development For Use During Pecvd Siox Coated Polymer Product Manufacturing, Daniel Lynn Helms Sep 2009

Feasibility Of Ellipsometric Sensor Development For Use During Pecvd Siox Coated Polymer Product Manufacturing, Daniel Lynn Helms

Master's Theses

Polymeric materials have provided pathways to products that could not be manufactured otherwise. A new technology which merges the benefits of ceramics into these polymer products has created materials ideally suited to many different industries, like food packaging. Nano Scale Surface Systems, Inc. (NS3), a company which coats polymers with ceramic oxides like SiO2 through a process known as plasma enhanced chemical vapor deposition (PECVD), was interested in the feasibility of an in line measurement system for monitoring the deposited films on various polymer products. This project examined two different coated polymer products, polyethylene terephthalate (PET) beverage containers and biaxially …


The Effects Of Pressure On Wide Bandgap Gan Semiconductors, William Kang, Linda Tran, Eunja Kim Aug 2009

The Effects Of Pressure On Wide Bandgap Gan Semiconductors, William Kang, Linda Tran, Eunja Kim

Undergraduate Research Opportunities Program (UROP)

Gallium nitride (GaN) is a group-III nitride semiconductor; which may prove useful in developing optical instruments that operate under high ambient pressures. The purpose of this project is to examine the properties of GaN under varying conditions. The methods used in this experiment consist of modeling free energy as a function of lattice constants; calculating bond lengths, bond strengths, and bulk moduli; and comparing the resultant data with values in published literature. We will also compare these results with experimental data drawn from x-ray diffraction scans. By doing so, we hope to determine whether gallium nitride is suitable for use …


Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor Aug 2009

Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor

Master's Theses

This thesis describes the design, fabrication, and testing process for a microfluidic phosphate colorimeter utilized for water quality analysis. The device can be powered by, and interfaced for data collection with, a common cell phone or laptop to dramatically reduce costs. Unlike commercially available colorimeters, this device does not require the user to measure or mix sample and reagent. A disposable poly(dimethylsiloxane) (PDMS) microfluid chip, powered by an absorption pumping mechanism, was used to draw water samples, mix the sample at a specific ratio with a molybdovanadate reagent, and load both fluids into an onboard cuvette for colorimetric analysis. A …


Morphology Of Ingaas Multilayer Nanostructure On Gaas High-Index Surfaces, Yanze Xie Aug 2009

Morphology Of Ingaas Multilayer Nanostructure On Gaas High-Index Surfaces, Yanze Xie

Graduate Theses and Dissertations

This work aimed to explore nanostructure configuration by growing multiple layers of strained InGaAs on GaAs high index surface. The knowledge learned would help to achieve a comprehensive picture of strain-driven nanostructure evolution. Ordered arrays of InGaAs quantum dots were demonstrated on GaAs(311)B. The ordering patterns depended on the thickness of GaAs interlayer between InGaAs Quantum Dots (QDs). With an increased interfacial thickness, a transition from two dimensional (2D) lateral ordering to 1D dot chains was observed. InGaAs growth on GaAs(311)A and GaAs(331)A ended up with 1D quantum wires (QWRs). Straight InGaAs QWRs were uniformly distributed across the surfaces owing …


Proton Irradiation Effects On Semiconductor Cdse/Zns Core/Shell Nanocrystals, Stephen Graham Charter Aug 2009

Proton Irradiation Effects On Semiconductor Cdse/Zns Core/Shell Nanocrystals, Stephen Graham Charter

Graduate Theses and Dissertations

The absorbance and photoluminescence measurement of semiconductor CdSe/ZnS core shell nanocrystals were reviewed and investigated after they were exposed to proton irradiation. The CdSe/ZnS core shell nanocrystals of 3.2nm and 4.4nm were commercially purchased and investigated. These nanocrystals were embedded in UV resin. Proton irradiation of energy 2MeV was applied at doses from 3 x 1013 protons cm-2 to 1.47 x 1015 protons cm-2 for both nanocrystal sizes. Absorbance measurements were conducted at 300K. Results from absorbance measurements showed slight broadening of the first exciton peak of both samples but was most noticeable in the 3.2nm nanocrystal sample. UV resin …


Metamaterial Devices For The Terahertz Band, Gabriel Paul Kniffin Jun 2009

Metamaterial Devices For The Terahertz Band, Gabriel Paul Kniffin

Center for Electron Microscopy and Nanofabrication Publications and Presentations

Terahertz (THz) and metamaterials are both hot topics in electromagnetics research. The THz band (0.1-10 THz) lies in the ‘gap’ between microwave and far infrared regions. Research is currently underway to characterize how these waves interact with matter, with potential applications including security screening, medical imaging, and non-destructive evaluation. Metamaterials are artificial materials containing sub-wavelength structures whose material properties, μ and ǫ can be ‘tuned’ to desired specifications, including simultaneously negative values, resulting in exotic properties such as a negative refractive index. Current metamaterials research includes the design of devices that operate at THz frequencies, filling a niche left wide …


Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon May 2009

Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon

Graduate Theses and Dissertations

There is increasing interest in quantum dot (QD) structures for a plethora of applications, including optoelectronic devices, quantum computing and energy harvesting. While strain driven surface diffusion via stranski-krastanow (SK) method has been commonly used to fabricate these structures, a more recent technique, droplet epitaxy (DE) does not require mismatch strain and is therefore much more flexible in the combination of materials utilized for the formation of QDs.

As reported in this work, a hybrid approach that combines DE and SK techniques for realizing lateral ordering of QDs was explored. First, the droplet formation of various materials was discussed and …


A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling Mar 2009

A Comparative Study Of The Bidirectional Reflectance Distribution Function Of Several Surfaces As A Mid-Wave Infrared Diffuse Reflectance Standard, Bradley Balling

Theses and Dissertations

The Bi-Directional Reflectance Distribution Function (BRDF) has a well defined diffuse measurement standard in the ultraviolet, visible, and near infrared (NIR), Spectralon(trade name). It is predictable, stable, repeatable, and has low surface variation because it is a bulk scatterer. In the mid-wave IR (MWIR) and long-wave IR (LWIR), there is not such a well-defined standard. There are well-defined directional hemispherical reflectance (DHR) standards, but the process of integrating BRDF measurements into DHR for the purpose of calibration is problematic, at best. Direct BRDF measurement standards are needed. This study use current calibration techniques to ensure valid measurements and then systematically …


Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii Mar 2009

Wave Optics Simulation Of Optically Augmented Retroreflections For Monostatic/Bistatic Detection, John J. Tatar Iii

Theses and Dissertations

Optical devices interrogated with a laser in the appropriate band can exhibit strong, deterministic reflections of the incident beam. This characteristic could be exploited for optical target detection and identification. The distribution of reflected power is strongly dependent on the geometry of the interrogation scenario, atmospheric conditions, and the cross section of the target optical device. Previous work on laser interrogation systems in this area has focused on analytic models or testing. To the best of my knowledge, I am presenting for the first time an approach to predict reflected power for a variety of interrogation configurations, targets, and propagation …


Optimization Of Gan Laser Diodes Using 1d And 2d Optical Simulations, Sean Richard Keali'i Jobe Mar 2009

Optimization Of Gan Laser Diodes Using 1d And 2d Optical Simulations, Sean Richard Keali'i Jobe

Master's Theses

This paper studies the optical properties of a GaN Laser Diode (LD). Through simulation, the GaN LD is optimized for the best optical confinement factor. It is found that there are optimal thicknesses of each layer in the diode that yield the highest optical confinement factor. There is a strong relationship between the optical confinement factor and lasing threshold—a higher optical confinement factor results in a lower lasing threshold. Increasing optical confinement improves lasing efficiency. Blue LDs are important to the future of lighting sources as they represent the final color in the RGB spectrum that does not have a …


Photoelectrochemical Properties Of Tio_2 Nanoparticles, Jie Qu, Ying Li, Qi-Wei Jiang, Xue-Ping Gao Feb 2009

Photoelectrochemical Properties Of Tio_2 Nanoparticles, Jie Qu, Ying Li, Qi-Wei Jiang, Xue-Ping Gao

Journal of Electrochemistry

The protonated titanate nanoparticles were obtained at room temperature and subsequently calcined at different temperatures(300 ℃,400 ℃,500 ℃,600 ℃ and 700 ℃) in air.The obtained products were characterized by XRD,TEM and UV-Vis.It is found that the grain sizes of TiO2 nanoparticles calcined at 300 ℃ were about 20 nm,and increased gradually with the temperature rise.Photoelectric performance was measured with I~V curve and electrochemical impedance spectroscopy(EIS).The TiO2 nanoparticles obtained at 500 ℃ showed the best photoelectrochemical properties with a photovoltaic conversion efficiency of 6.39%,which is much higher than those at other temperatures.In addition,it is also demonstrated that the charge transfer resistance …


Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith Jan 2009

Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith

Master's Theses

Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films. …


Preparation Of Wo3 Nanoparticles Using Cetyl Trimethyl Ammonium Bromide Supermolecular Template, Nilofar Asim, S. Radiman, M.A. Bin Yarmo Jan 2009

Preparation Of Wo3 Nanoparticles Using Cetyl Trimethyl Ammonium Bromide Supermolecular Template, Nilofar Asim, S. Radiman, M.A. Bin Yarmo

Nilofar Asim

WO3 is one of the most interested metal oxides because of its application as catalysts, sensors, electrochromic devices, ceramic, solar cell, pigments and so on. More investigation is needed to find the good and low cost method for preparation of WO3 nanoparticles with uniform morphology and narrow distribution using a surfactant mediated method. Approach: In this study, the synthesis of WO3 nanoparticles was accomplished using a cationic surfactant (cetyl trimethyl ammonium bromide) as the organic supermolecular template and WCl6 and NH4 OH as the inorganic precursor and counter ion source, respectively. The effects of reaction temperature and surfactant concentration in …


Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill Jan 2009

Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill

Electrical & Computer Engineering Faculty Research

Alumina nanopore structures find applications in magnetic sensors, optical filters, and various biological devices. In this work, we present a ray-optics model for the optical filter. We present a detailed simulation and a simplified analytical expression for the reflectance as a function of the alumina parameters such as pore diameter, pore density, alumina thickness, and a function of the wavelength and angle of incidence of the illuminating plane electromagnetic wave. The reflectance vs wavelength in the range of 400–800nm obtained from the simulation and the analytical expression are compared with that of the experiments for thin and thick alumina. All …