Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Materials Science and Engineering

The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist Dec 2017

The Inter-Laminar Shearing Effect On Wrinkle Development In Composite Forming Processes, David Sundquist

McKelvey School of Engineering Theses & Dissertations

Composite materials are becoming prevalent in aerospace industries as the uniqueness of the composite structure allows the composite to be tailored specifically for individual applications. Many fabrication techniques produce defects in composite parts such as wrinkles, fiber waviness, fiber misalignment, and porosity. The driving mechanisms behind these defects occurring during forming processes are not fully understood and, thus, characterization formation of these defects in a uncured state is beneficial to optimize composite processing. This work primarily investigated the influence of how uncured pre-impregnated carbon ply properties affect the wrinkling behavior of a composite laminates. Several factors affecting composite ply forming …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Investigation Of A Method To Determine Mechanical Properties Of Integral Composite Hinges For Application In Foldable Skis, Jada Evers, Kathryn Johnson Jun 2017

Investigation Of A Method To Determine Mechanical Properties Of Integral Composite Hinges For Application In Foldable Skis, Jada Evers, Kathryn Johnson

Materials Engineering

No abstract provided.


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat …