Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Materials Science and Engineering

Experimental And Numerical Studies Of Novel Thermal Energy Storage Materials For Applications In Concrete And Energy Storage Systems, Wenyu Liao Jan 2021

Experimental And Numerical Studies Of Novel Thermal Energy Storage Materials For Applications In Concrete And Energy Storage Systems, Wenyu Liao

Doctoral Dissertations

In this work, several types of novel thermal energy storage (TES) materials and composites are explored, and a series of numerical simulation models and experimental protocols are developed to evaluate the potentials of these materials to be applied in concrete, pavement, and thermal energy storage systems.

The first two types of novel TES materials/composites are at the micro-scale, which use micro diatomite (DE) and cenosphere (Ceno) as carriers of phase change material (PCM), respectively. The third type of novel TES material is at the macro-scale, utilizing lightweight sand (LWS) and lightweight coarse aggregate as carriers to load PCM. The last …


The Effects Of Rigid Polyurethane Foam As A Confinement Material On Breaching Charge Detonations, Nathan Franz Paerschke-O'Brien Jan 2021

The Effects Of Rigid Polyurethane Foam As A Confinement Material On Breaching Charge Detonations, Nathan Franz Paerschke-O'Brien

Masters Theses

"The effects of a rigid polyurethane foam used as a confinement material on four types of breaching explosives were tested, focusing on the changes in shockwave peak pressures, detonation load compression forces, and brisance cratering abilities. The Plate Dent testing procedure was modified to incorporate a load cell force sensor, and two air overpressure sensors were included adjacent to the blast to quantify each test result. The testing variables focused on the polyurethane foam cure times and thickness volumes around the breaching explosives to determine the breaching charges' optimal energy output capabilities when confined by the foam material. The rigid …


Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki Jan 2021

Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki

Doctoral Dissertations

"Lead-acid batteries are an established technology with nearly 99% recyclability; however, lead-acid batteries produce only 40% of their theoretical capacity due to poor active mass utilization and PbSO4 pore blockage, and the longevity of the batteries is hampered by secondary reactions during the cycle life such as corrosion and gassing.

Lead-acid batteries were investigated and improved through several different approaches: an alternative electrolyte to mitigate secondary reactions, graphite additives to improve positive active mass (PAM) utilization, and dispersant additives to help the industrial pasting process.

The thermodynamics and chemical reactions of a commercial electrolyte replacement called TydrolyteTM were investigated …


Mechanical Activation And Cation Site Disorder Of Spinel-Based Ceramics, Cole A. Corlett Jan 2021

Mechanical Activation And Cation Site Disorder Of Spinel-Based Ceramics, Cole A. Corlett

Masters Theses

"This research focuses on the processing and the effects that has on the cation disorder of magnesium-aluminate spinel based (MgAl2O4) ceramics. The first goal of this project was to determine the effects of high-energy milling, i.e., mechanical activation, on cation disorder (inversion) within the spinel structure. First, 1:1 molar ratios of MgO:Al2O3 ceramics were processed using two green processing methods, ball milling (XD) and SPEX milling (mechanical activation, MA) followed by a subsequent annealing treatment in air to form a single spinel phase in each powder sample. Neutron diffraction analysis was employed to …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Toward Understanding Commercial Additives For Zincate Electrogalvanizing, Margaret Scott Jan 2021

Toward Understanding Commercial Additives For Zincate Electrogalvanizing, Margaret Scott

Masters Theses

"Cyanide zinc electrogalvanizing has been used for many years to produce high quality and uniform zinc coatings. Due to toxicity concerns, a significant amount of research has occurred to remove the use of cyanide while still producing a similar deposit. One of the resulting plating chemistries is the alkaline zincate bath.

Alkaline zincate plating has the advantages of low startup cost, low toxicity, and low corrosion rate. Despite these advantages, alkaline bath conditions do not produce acceptable zinc deposits without the use of plating additives, which can promote lustrous, smooth deposits. This research aims to: (1) generate fundamental electrochemical data …


Properties And Structures Of Alkali Molybdenum Iron Phosphate Glasses For Nuclear Waste Immobilization, Jincheng Bai Jan 2021

Properties And Structures Of Alkali Molybdenum Iron Phosphate Glasses For Nuclear Waste Immobilization, Jincheng Bai

Doctoral Dissertations

"The development of glasses to immobilize nuclear wastes requires a detailed understanding of how composition affects the critical properties required to design wasteforms, including thermal stability and chemical durability. Those properties depend on the molecular-level structures of the glasses. The principal objective of this research was to develop a comprehensive understanding of the composition-structure-property relationships, including the effects of processing conditions, for glasses in the alkali- molybdenum-iron-phosphate systems that could then be used to inform the development of wasteforms of interest to the US Department of Energy.

The molecular-level structures of the alkali molybdenum iron phosphate glasses were analyzed by …


Thermophysical Properties Of Nominally Phase Pure Boride Ceramics, Austin D. Stanfield Jan 2021

Thermophysical Properties Of Nominally Phase Pure Boride Ceramics, Austin D. Stanfield

Doctoral Dissertations

"This research focusses on the thermophysical properties of nominally phase pure boride ceramics. As interest in ultra high temperature ceramics increases due to a renewed interest in hypersonic flight vehicles and with the expanding materials design space accompanying interest in high entropy materials, it is imperative to understand the intrinsic properties of boride ceramics. By reducing Hf content in ZrB2 from the natural abundance, ~1.75 at% in this case, to ~100 ppm, thermal conductivity increased from 88 W/m·K to 141 W/m·K. Removal of Hf allowed the thermal conductivity of ZrB2 with small transition metal solute additions to be …


Contributions To The Performance Of Thin Film Capacitors For High Reliability Applications, Daniel Krueger Jan 2021

Contributions To The Performance Of Thin Film Capacitors For High Reliability Applications, Daniel Krueger

Doctoral Dissertations

"Capacitors are critical devices in microelectronic assemblies that must be incorporated into electronic systems through a variety of ways such as integrated or discrete devices. This work has developed new thin film capacitors deposited directly onto multichip module or printed circuit board surfaces to benefit from closer integration that enhances system performance for use in high reliability applications. The capacitors serve as filters or provide tuning and energy storage functions. Unexpected performance was observed during development that included low adhesion of the films to the substrates, higher effective dielectric constants than reported in literature, and low yields. Three publications resulted …


Phase Formation And Thermal Conductivity Of Zirconium Carbide, Yue Zhou Jan 2021

Phase Formation And Thermal Conductivity Of Zirconium Carbide, Yue Zhou

Doctoral Dissertations

“This research focused on the synthesis and phase formation of zirconium carbide with different carbon contents, and lattice thermal conductivity of zirconium carbide with different carbon vacancy, hafnium, and oxygen contents.

Nominally pure phase ZrCx was synthesized by solid-state reaction of zirconium hydride (ZrHs) and carbon black at a temperature as low as 1300°C. The powder synthesized at 1300C was carbon deficient ZrCx . Carbon stoichiometry of the as- synthesized powders increased as the synthesis temperature increased. As the synthesis temperature increase, the oxygen content of ZrCx decreased due to the increasing C site occupancy. Low stoichiometry …


Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski Jan 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski

Doctoral Dissertations

“Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/cm3) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-annealing nucleation and growth simulations using molecular dynamics were …


Thermal And Mechanical Properties Of Novel Carbide Materials, Evan Charles Schwind Jan 2021

Thermal And Mechanical Properties Of Novel Carbide Materials, Evan Charles Schwind

Doctoral Dissertations

"This research focuses on studying the thermal and mechanical properties of novel carbide materials at room and elevated temperatures. The novel carbide materials investigated include zeta phase tantalum carbide (ζ-Ta4C3-x) and a high entropy (Ta,Hf,Nb,Zr)C carbide. The electrical resistivity and thermal conductivity of zeta phase tantalum carbide (~96 wt.%) were measured as 160 ± 4.2 μΩ-cm and 9.6 W/m•K. These are higher and lower (respectively) than for cubic tantalum carbide, most likely due to planes of carbon vacancies present in the ζ-Ta4C3-x crystal structure. The thermal conductivity of (Ta,Hf,Nb,Zr)C was lower than any …