Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Materials Science and Engineering

Fatigue Behavior Of An Advanced Melt-Infiltrated Sic/Sic Composite With Environmental Barrier Coating At 1200°C In Air And In Steam, Thaddeus M. Williams Mar 2020

Fatigue Behavior Of An Advanced Melt-Infiltrated Sic/Sic Composite With Environmental Barrier Coating At 1200°C In Air And In Steam, Thaddeus M. Williams

Theses and Dissertations

Advanced aerospace applications such as aircraft turbine engine components, hypersonic flight vehicles, and spacecraft reentry thermal protection systems require structural materials that have superior long-term mechanical properties under high temperature, high pressure, and varying environmental factors, such as moisture. Because of their low density, high strength and fracture toughness at high temperatures SiC fiber-reinforced SiC matrix composites are being evaluated for aircraft engine hot-section components. In these applications the composites will be subjected to various types of mechanical loadings at elevated temperatures in oxidizing environments. Because their constituents are intrinsically oxidation-prone, the most significant problem hindering SiC/SiC composites is oxidation …


Creep Of Hafnium Diboride -20 Vol% Silicon Carbide At 1500°C In Air, Glen E. Pry Mar 2018

Creep Of Hafnium Diboride -20 Vol% Silicon Carbide At 1500°C In Air, Glen E. Pry

Theses and Dissertations

Refractory metal borides, commonly referred to as Ultra High Temperature Ceramics (UHTCs), exhibit a number of unique properties, such as extremely high melting temperature and hardness, chemical stability, high electrical and thermal conductivity and corrosion resistance. It has been demonstrated that the addition of SiC improves the oxidation resistance of ZrB2- and HfB2-based UHTCs above 1200°C by modifying the composition of the oxide scale. Addition of SiC retards the oxidation rate of ZrB2 and HfB2 by forming a protective layer of borosilicate glass. Creep deformation is one of the critical criterion for structural application of ceramics at elevated temperatures. Compression …


Tensile Properties And Fatigue Behavior Of Geopolymer Matrix Composites With Carbon Fiber Reinforcement At Elevated Temperature, Steffan M.L. Wilcox Mar 2018

Tensile Properties And Fatigue Behavior Of Geopolymer Matrix Composites With Carbon Fiber Reinforcement At Elevated Temperature, Steffan M.L. Wilcox

Theses and Dissertations

The tensile stress-strain and tension-tension fatigue of geopolymer matrix composites reinforced with 0/90 carbon fibers was investigated at 23 and 300°C in laboratory air. Geopolymers are inorganic polymeric materials composed of alumina, silica, and alkali metal oxides. Because geopolymers are synthesized as a fluid mixture or particles and liquid, they can be cast into a desired shape, and cured at only slightly elevated temperatures. The relative ease of synthesis and low processing temperatures make geopolymers an attractive choice as a matrix material for composite materials. Geopolymers also offer resistance to heat and oxidizing environments. Currently, geopolymer matrix composites are being …


Experimental Investigation Of Mechanical Behavior Of An Oxide/Oxide Ceramic Composite In Interlaminar Shear And Under Combined Tension-Torsion Loading, Skyler R. Hilburn Mar 2014

Experimental Investigation Of Mechanical Behavior Of An Oxide/Oxide Ceramic Composite In Interlaminar Shear And Under Combined Tension-Torsion Loading, Skyler R. Hilburn

Theses and Dissertations

Creep behavior in interlaminar shear of an oxide-oxide ceramic composite, Nextel 720™/aluminosilicate (N720/AS), was investigated at 1100°C in laboratory air and in steam. The interlaminar shear strength (ILSS) was determined as 7.65 MPa. The creep behavior was examined for interlaminar shear stresses in the 2-6 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. Tertiary creep was noted in the tests performed at 6 MPa. Larger creep strains and higher creep strain rates were produced in steam. Surprisingly, the presence of steam had a beneficial effect on creep lifetimes. It appears …


Effects Of Polishing Shot-Peened Surfaces On Fretting Fatigue Behavior Of Ti-6al-4v, Kasey S. Scheel Sep 2006

Effects Of Polishing Shot-Peened Surfaces On Fretting Fatigue Behavior Of Ti-6al-4v, Kasey S. Scheel

Theses and Dissertations

The research of this thesis was done to investigate the effects of polishing a shot-peened specimen of Ti-6Al-4V on the fretting fatigue life of that specimen. The shot-peening process, though one of the most beneficial techniques in prolonging fretting fatigue life, creates a textured surface that may lead to problems on the micro level. This research was done in an attempt to further improve the peening process by examining the effects of another surface treatment to be used in conjunction, surface polishing. The rough peened surface may contain abrupt changes in surface geometry that act as stress risers, which are …


Wear Analysis Of Cu-Al Coating On Ti-6al-4v Under Fretting, Karl N. Murray Jun 2006

Wear Analysis Of Cu-Al Coating On Ti-6al-4v Under Fretting, Karl N. Murray

Theses and Dissertations

The effects of changes in the coefficient of friction (CoF) between the contacting surfaces on the fretting wear characteristics of Cu-Al coating on Ti-6Al-4V were investigated. This Cu-Al coating is part of a system that is applied to titanium turbine blades to reduce fretting at the interface. In the application, there is a solid lubricant that is added on top of the coating as an assembly aid and to help reduce the friction while the lubricant remains within the contact. Previous studies have researched the characteristics of the coating without the additional lubricant. In this study, liquid motor oil was …


Validation Of A Scaled Plane Strain Hypervelocity Gouging Model, Ronald J. Pendleton Mar 2006

Validation Of A Scaled Plane Strain Hypervelocity Gouging Model, Ronald J. Pendleton

Theses and Dissertations

The phenomenon of high speed impact is of great interest to the Air Force of Scientific Research and the Air Force Research Laboratory's Holloman High Speed test track. Rocket sled tests at the facility frequently are limited to velocities lower than actually attainable due to damage to the rail in the form of gouges. Direct observation of the gouging phenomenon is not currently possible. This leaves computational modeling as the only means to study the phenomenon. A computer model has previously been used to model the development of gouging at the Holloman High Speed Test Track. However, this model has …


An Investigation Of A Simplified Gouging Model, Gregory S. Rickerd Mar 2005

An Investigation Of A Simplified Gouging Model, Gregory S. Rickerd

Theses and Dissertations

Gouging is a type of structural failure that becomes important when two metals slide against each other at velocities in the range of 1.5 kilometers per second. A computer model has previously been used to model the development of gouging at the Holloman High Speed Test Track. This model has not been experimentally verified to be correct, due to the complexity of the model. This research develops a simplified model that can be experimentally verified. The computer program utilized in this research was studied to determine the most appropriate options to use in simulations. This was accomplished by modeling a …


Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle Mar 2005

Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle

Theses and Dissertations

Stress rupture tests on the SylramicTM fiber with an in-situ layer of boron nitride, boron nitride interphase, and SiC matrix ceramic matrix composite were performed at 550°C and 750°C with 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH2O. The 550°C, 100-hr strengths were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy analysis estimated the total embrittlement times for 550°C with 0.0, 0.2, and 0.6 atm pH2O were >63 hrs, >38 hrs, and between …


The Evaluation Of The Damping Characteristics Of A Hard Coating On Titanium, Christopher M. Blackwell Mar 2004

The Evaluation Of The Damping Characteristics Of A Hard Coating On Titanium, Christopher M. Blackwell

Theses and Dissertations

Engine failures due to fatigue have cost the Air Force an estimated $400 million dollars per year over the past two decades (Garrison, 2001). Damping treatments capable of reducing the internal stresses of fan and turbine blades to levels where fatigue is less likely to occur have the potential for reducing cost while enhancing reliability. This research evaluates the damping characteristics of magnesium aluminate spinel, MgO+Al2O3, (mag spinel) on titanium plates. The material and aspect ratio were chosen to approximate the low aspect ratio blades found in military gas turbine fans. The plates were tested with …


Fatigue Response Of Thin Stiffened Aluminum Cracked Panels Repaired With Bonded Composite Patches, Jason B. Avram Mar 2001

Fatigue Response Of Thin Stiffened Aluminum Cracked Panels Repaired With Bonded Composite Patches, Jason B. Avram

Theses and Dissertations

This research investigated the fatigue response of precracked and patched 2024-T3 Aluminum panels with stiffeners. Patches were single-sided, unidirectional three ply boron/epoxy. Stiffeners were 2024-T3 aluminum and were riveted and bonded on. Disbonds were introduced into the repair bondline by inserting teflon strips. Three disbond configurations were investigated rack tip disbond (CTD) located at the edge of the patch in the path of crack propagation, full-width disbond (FWD) covering the entire crack, and end disbond (ED) located at each end of the patch and covering the full width. Each repaired panel was subjected to tension/tension cyclic fatigue with a maximum …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Thickness Effects On A Cracked Aluminum Plate With Composite Patch Repair, Joel J. Schubbe Jun 1997

Thickness Effects On A Cracked Aluminum Plate With Composite Patch Repair, Joel J. Schubbe

Theses and Dissertations

Post-repair fatigue crack growth was investigated in 3.175, 4.826, and 6.35 mm thick aluminum panels asymmetrically repaired with boron/epoxy composite patches bonded to the plates with FM73 sheet adhesive. Patches were uniaxial with patch to panel stiffness ratios ranging from 0.46 to 1.3. Experimental fatigue tests were carried out at 120 MPa, R=0.1, and 10 Hz (sinusoidal) to measure patched and unpatched face crack lengths, center crack opening displacements, and selected strains. Crack growth data was acquired using optical, eddy current, and post-test analysis methods. Crack growth rates were calculated using the incremental polynomial method. A three-layer Mindlin plate finite …


Thermal Stresses In End-Heated Layered Media, Jerry R. Couick Dec 1995

Thermal Stresses In End-Heated Layered Media, Jerry R. Couick

Theses and Dissertations

Thermal stresses in semi-infinite layered beams heated on the end are calculated using an extension to simple bimetallic thermostat theory. Recently, researchers have used the concept of interfacial compliance to determine interlaminar stresses in a simple thermostat of finite length subjected to a uniform temperature increase. In the present work, the thermostat theory is extended to apply to the beams of interest. A closed-form solution to the problem is obtained. It is not applicable within about one beam thickness (St Venant boundary region) of the end. Various classes of layered materials are analyzed to determine if significant stresses exist outside …


Characterization Of Fatigue Behavior Of 2-D Woven Fabric Reinforced Ceramic Matrix Composite At Elevated Temperature, Daniel J. Groner Dec 1994

Characterization Of Fatigue Behavior Of 2-D Woven Fabric Reinforced Ceramic Matrix Composite At Elevated Temperature, Daniel J. Groner

Theses and Dissertations

This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced Sic-SiC ceramic matrix composite specimens at 1100°C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle-low stress fatigue tests, far less fiber-matrix interface debond was evident than in low cycle-high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.


Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite At Elevated Temperature Under Tension-Tension Loading, Craig D. Steiner Dec 1994

Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite At Elevated Temperature Under Tension-Tension Loading, Craig D. Steiner

Theses and Dissertations

This study investigated the fatigue behavior and damage mechanisms of a [0-90]4s SiC-MAS ceramic matrix composite under tension-tension loading at two elevated temperatures and two frequencies. Stress and strain hystereses, maximum and minimum strain, and modulus of elasticity were evaluated to characterize the material behavior. Microscopy and fractography were used to evaluate damage progression and mechanisms. Fatigue life was independent of frequency at both temperatures.


Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey Dec 1994

Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey

Theses and Dissertations

This research modifies the existing finite element formulation of a potential energy based large deformation and moderate rotation theory. Hermitian shape functions replace the existing linear bending angle interpolations. Negligible differences between the two formulations indicate the underlying kinematics limit the accuracy, not the finite element interpolations. Using the new program, numerous nonlinear arch geometries are modeled to investigate the effects of arc length and thickness variations. Local and global snapping phenomena are captured as well as through the thickness shear driven nonlinearities.


Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite Subjected To Tension-Tension Cycling With Hold Time, Scott A. Grant Dec 1994

Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite Subjected To Tension-Tension Cycling With Hold Time, Scott A. Grant

Theses and Dissertations

This study was carried out to investigate the elevated temperature behavior of the SiC-MAS5 cross- ply [0-90]4S ceramic matrix composite manufactured by Corning Inc. to fatigue with loading waveforms that combine the characteristics of stress rupture and high cycle fatigue. The test results were compiled in the form of S-N (cycles to failure), S-T (exposure time versus cycles to failure), S-S (energy exposure versus cycles to failure), normalized modulus degradation, strain progression, and hysteresis loop progression. From the mechanical behavior demonstrated by these curves, relationships between the effect of the environment and loading waveform were developed. In addition, a …


Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel Dec 1993

Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel

Theses and Dissertations

This study investigated the effects of embedding optical fibers into advanced composite materials. This combination was meant to simulate 'smart structures' that have been shown to sense several different variables in the composite including strain, temperature, and damage. A laminate orientation taken from an existing aircraft structure was used to fabricate sixteen groups of specimens which were subjected to compression testing in an IITRI fixture to determine the ultimate compressive strength and modulus of elasticity. Ten of these groups were fabricated with optical fibers while the other six were control groups and contained no optical fibers. This study showed that …


Investigation Of Compressive Behavior For Metal Matrix Composites With A Circular Hole, Janet L. Gooder Dec 1993

Investigation Of Compressive Behavior For Metal Matrix Composites With A Circular Hole, Janet L. Gooder

Theses and Dissertations

This study investigated the notched and unnotched macromechanical response due to micromechanical behavior of [0/±45/90]S SCS-6/β 21 S and [0/90] 2S Sigma/β 21S subjected to static compressive loads at room temperature. The stress-strain behavior and mechanical response in the presence of a circular hole was examined. A clear description of the progressive nature of damage, which ultimately resulted in failure, was provided. The effect of elevated temperature was shown for SCS-6/β 21S. The ultimate compressive strength and elastic modulus were reported for both MMCs. Sigma/β 21S and SCS-6/β 21S were mildly notch sensitive at room temperature. Notch sensitivity of …


Investigation Of Tension-Compression Fatigue Behavior Of A Cross-Ply Metal Matrix Composite At Room And Elevated Temperatures, Elizabeth A. Boyum Dec 1993

Investigation Of Tension-Compression Fatigue Behavior Of A Cross-Ply Metal Matrix Composite At Room And Elevated Temperatures, Elizabeth A. Boyum

Theses and Dissertations

This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension- tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427°C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than the room …


Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite Under Strain Controlled Tension-Tension And Tension-Compression Loading, James J. Gudaitis Dec 1993

Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite Under Strain Controlled Tension-Tension And Tension-Compression Loading, James J. Gudaitis

Theses and Dissertations

This stuidy investigates the fatigue response of a cross-ply [0/90]2s Nicalon/Calcium Aluminosillicate (Nicalcc/CAS) ceramic matrix composite at room temperature under strain controlled tension-tension and tension-compression fatigue loading. The primary objectives were to determine strain fatigue limits for both loading cases and to complete a fatigue life diagram (Δe-N) for all tests. Failure mechanisms were also studied. The average initial modulus value for this lay-up was 120 GPa. The ultimate tensile strain was 0.00988 mn/mm (285 MPa). Eight tests were conducted with maximum strains that ranged from 0.00300 mm/mm to 0.00722 mm/mm. The tension-tension fatigue limit was found to be …


Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite At Elevated Temperatures Under Tension-Tension Loading, Richard J. Tuznik Dec 1993

Fatigue Behavior Of A Cross-Ply Ceramic Matrix Composite At Elevated Temperatures Under Tension-Tension Loading, Richard J. Tuznik

Theses and Dissertations

A study was conducted which investigated the behavior of a Nicalon/ Calcium-Aluminosilicate (Nicalon/CAS) cross-ply [0/90]2S ceramic matrix composite at elevated temperatures under tension-tension fatigue loading. Tension-tension fatigue tests were performed with a load ratio of R = 0.10 and a frequency of 10 Hertz at 700°C and 850°C. These results were compared to results from a previous study conducted at room temperature. Material behavior and damage was recorded by fatigue life curves, elastic modulus' maximum and minimum strain, acetate replication techniques, and post-mortem fractography. Analysis of these results showed identical matrix dominated damage behavior at RT and 700°C. Ultimate …


Characterization Of Fatigue Damage In A Metal Matrix Composite (Scs-6/ Ti-15-3) At Elevated Temperature, Brian P. Sanders Nov 1993

Characterization Of Fatigue Damage In A Metal Matrix Composite (Scs-6/ Ti-15-3) At Elevated Temperature, Brian P. Sanders

Theses and Dissertations

The fatigue characteristics of a unidirectional titanium based metal matrix composite (MMC) were investigated at elevated temperature (427°C). A hybrid strain controlled loading mode was used to subject the 0° and 90° laminas to fatigue. Along with the fatigue tests, microscopy and analytical modeling ware also conducted. This combination of activities led to defining the initiation and progression of damage and deformation in the MMC. Hen loading was parallel to the fiber on, the fatigue behavior was initially dominated by creep deformation of the matrix. Then, depending on the maximum strain, specimen failure was the result either fiber fractures or …