Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr 1-Xnb 0.1 Co 0.9 O 3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao Aug 2014

Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr 1-Xnb 0.1 Co 0.9 O 3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao

Faculty Publications

The creation of A-site cation defects within a perovskite oxide can substantially alter the structure and properties of its stoichiometric analogue. In this work, we demonstrate that by vacating 2 and 5% of A-site cations from SrNb0.1Co0.9O3−δ (SNC1.00) perovskites (Sr1−sNb0.1Co0.9O3−δ, s = 0.02 and 0.05; denoted as SNC0.98 and SNC0.95, respectively), a Jahn–Teller (JT) distortion with varying extents takes place, leading to the formation of a modified crystal lattice within a the perovskite framework. Electrical conductivity, electrochemical performance, chemical compatibility and microstructure of Sr …


A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh Aug 2014

A Low Temperature Nonlinear Optical Rotational Anisotropy Spectrometer For The Determination Of Crystallographic And Electronic Symmetries, Darius H. Torchinsky, Hao Chu, Tongfei Qi, Gang Cao, David Hsieh

Center for Advanced Materials Faculty Publications

Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the μm length scale, a need …