Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Materials Science and Engineering

Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler Mar 2023

Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler

Theses and Dissertations

Compact turbine engines are of increasing interest as a means of propulsion for small, lightweight, low cost, unmanned aerial systems. This study looks to leverage advancements in novel manufacturing technology to produce turbomachinery components while simultaneously reducing costs and manufacturing time. To determine the feasibility of drop-in replacements for stock components this study focused on several research areas. This included materials research on both polymer-reinforced and ceramic materials, specimen tensile testing to determine temperature-dependent material properties, finite element analysis of multiple candidate materials, design and fabrication of a spin test rig, and physical spin testing of manufactured components to predict …


Mechanical Properties And Tension-Tension Fatigue Behavior Of A Novel Additively Manufactured Polymer Matrix Composite At Room And Elevated Temperature, Grayson M. Harber Sep 2022

Mechanical Properties And Tension-Tension Fatigue Behavior Of A Novel Additively Manufactured Polymer Matrix Composite At Room And Elevated Temperature, Grayson M. Harber

Theses and Dissertations

The tension-tension fatigue behavior of a novel additively manufactured AM carbon fiber reinforced polymer matrix composite was studied. This novel material system consists of T1100 carbon fibers, and a UV photocured resin developed by Continuous Composites and Sartomer. Tensile properties and tension-tension fatigue were investigated for the 090 fiber orientation as well as for the ±45 fiber orientation. Specimens with 0/90 fiber orientation were tested at ambient laboratory temperature 23 °C and at elevated temperature 150 °C, while the specimens with the ±45 fiber orientation were tested only at ambient laboratory temperature. Tension-tension fatigue testing was carried out with a …


Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart Aug 2022

Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart

Theses and Dissertations

As research continues for the habitation of the Lunar and Martian surfaces, the need for materials for construction of structural parts, mechanical components, and tools remains as a major milestone. The use of in-situ resource utilization (ISRU) techniques is critical due to the financial, physical, and logistical burdens of sending supplies beyond low-Earth orbit. The Bosch process is currently in development as a life support system at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to regenerate oxygen (O2) from metabolic carbon dioxide (CO2) with the byproduct of elemental carbon (C). The Bosch process presents a …


Potential Solution To Meet Growing Demands Of Refractory Metal: Selective Laser Melting Of Molybdenum-Tungsten Alloy, Jae Yu Mar 2022

Potential Solution To Meet Growing Demands Of Refractory Metal: Selective Laser Melting Of Molybdenum-Tungsten Alloy, Jae Yu

Theses and Dissertations

Selective laser melting (SLM) of refractory metals has been of high interest in research due to the metals’ potential desirable characteristics in aeronautical and space applications. In particular, molybdenum and tungsten have been the focus of several studies in the search for high temperature and high strength purposes in applications like supersonic aircraft, re-entry vehicles, nuclear fission, power generation, and other space systems. However, there is still a significant knowledge gap to process defect-free alloys and making use of them in practical engineering functions. The aim of this study is to characterize the relationship between the microstructure and mechanical properties …


Investigation Of Ultem 9085 For Use In Printed Orbital Structures, William R. Gallagher Mar 2020

Investigation Of Ultem 9085 For Use In Printed Orbital Structures, William R. Gallagher

Theses and Dissertations

Additive manufacturing is revolutionizing industries ranging from medicine to space. However, the structural characteristics of plastic parts created by these methods are not as well understood as their more established counterparts. This research explored two relevant areas: how the structural characteristics of ULTEM 9085 plastic behaved after exposure to orbital conditions and the design of the cross-sectional area of a beam to be 3-D printed in microgravity based on the expected loads from the printer. To study orbital effects, ULTEM 9085 was printed into 1/4th scale ASTM D638- 14 dogbones using a Stratasys 450mc printer. These dogbones were placed in …


Design, Development, And Testing Of A Low Cost, Additively-Manufactured, Centrifugal Compressor, Aaron P. Bauer Mar 2020

Design, Development, And Testing Of A Low Cost, Additively-Manufactured, Centrifugal Compressor, Aaron P. Bauer

Theses and Dissertations

The three objectives of this research were to: 1.) design, build, and test AM compressors to substitute into COTS micro-gas turbine engines, 2.) provide initial correlations between FEA and compressor failure speed, and 3.) characterize the effects of AM on compressor performance. These goals improved the design cycle cost and the design-validation time cycle. ULTEM 9085, 300-AMB, and Onyx-Kevlar temperature-dependent tensile properties were measured. FEA-predicted failure speeds of stock compressor designs led design improvements, potentially fulfilling the original compressor requirements. Physical testing of the stock and ULTEM 9085 compressors occurred. Comparing these compressors' performances demonstrated that low cost, AM materials …


Solution Anneal Heat Treatments To Enhance Mechanical Performance Of Additively Manufactured Inconel 718, David J. Newell Mar 2020

Solution Anneal Heat Treatments To Enhance Mechanical Performance Of Additively Manufactured Inconel 718, David J. Newell

Theses and Dissertations

The nickel-based superalloy Inconel 718 (IN718) is an excellent candidate among aerospace alloys for laser powder-bed fusion (LPBF) manufacturing. As-built LPBF IN718 has a vertically aligned columnar (001) microstructure which translates into orthotropic mechanical behavior. The post-process heat treatments for IN718 were developed 60 years ago for wrought and cast processes and do not mitigate the columnar microstructure of the LPBF process. Recrystallization is required to remove the columnar microstructure, which would allow for parts to be fabricated on different machines or in different orientations but still achieve the same properties. This research investigated the microstructure of LPBF IN718 as …


In Silico Analysis Of Advanced Processing Methods For Light-Weight Alloys Powders, Marjan Nezafati Dec 2018

In Silico Analysis Of Advanced Processing Methods For Light-Weight Alloys Powders, Marjan Nezafati

Theses and Dissertations

Light-weight Al and Mg-based metal-matrix nanocomposites (MMNCs) are lauded as one of the most promising structural materials for vehicle, military, and construction applications. These MMNCs are often synthesized using the powder metallurgy (PM) process under liquid nitrogen cryogenic environments to control the grain sizes. It is believed that proper incorporation of the nitrogen species into the bulk lattice during processing could strongly enhance the mechanical properties of MMNCs by forming N-rich dispersoids. In this work, using the density-functional theory (DFT), the adsorption, absorption and diffusion behavior of nitrogen molecule/atoms have been studied and related to t Al and Mg MMNC …


Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box Mar 2017

Analysis Of Additively Manufactured Lattice Structures Using Finite Element Methods, Christopher A. Box

Theses and Dissertations

Additive Manufacturing (AM) processes are well known for their ability to fabricate parts with complex geometries. Lattice structures leverage this ability to create parts with high strength-to-weight ratio and other desirable structural qualities. This research presents a parameterized modeling tool using common Finite Element Analysis (FEA) and scripting software with which aggregated lattice structures can be analyzed, given different geometric properties and loading conditions. A full factorial Design of Experiments is run to explore the effects of various parameters on the strength of lattice structures. Experimental compressive strength results from three FDM-produced PLA lattices are discussed and compared to predictions …