Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Materials Science and Engineering

Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao Aug 2018

Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao

The Summer Undergraduate Research Fellowship (SURF) Symposium

Catalysis is used in a significant portion of production processes in the industrialized world, including most processing of chemicals and fuels. This makes maximizing the efficiency of catalysts a high priority. However, the immense number of candidates for new catalysts precludes the possibility of testing all of them by experiments. Density functional theory (DFT) has been widely and successfully used to calculate material properties relevant to catalysis and to screen promising candidates for experimental testing, but there currently exists no publicly- available, user-friendly tool for performing these DFT calculations. This work details the development of such a tool for nanoHUB.org …


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang Aug 2018

Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Iron (Fe)-based alloys (such as steel) are widely used structural materials in industry. Numerous methods have been applied to improve their mechanical properties. In this study, we used a technique know as magnetron sputtering to deposit various Fe-based binary alloy coatings to investigate the influence of solutes on solid solution hardening. Several factors contribute to the solid solution hardening of the alloys, such as composition, atomic radius, modulus, and lattice parameter. After preliminary calculations and analysis, we selected several solutes, including molybdenum (Mo), niobium (Nb), and zirconium (Zr). The compositions of solutes were varied to be 2.5, 5, 8 atomic …


Grain Boundary Motion Analysis, Jeremy Marquardt, Xiaorong Cai, Marisol Koslowski Aug 2018

Grain Boundary Motion Analysis, Jeremy Marquardt, Xiaorong Cai, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Grain growth is a mechanism to relax residual stresses in thin films. These grains grow out of the thin film surface and are known as whiskers. These whiskers can cause short circuits, so developing scalable and cost effective solutions would increase the reliability and utility of tin electronics. A popular of method of examining tin whiskering is microscopic simulation, as it provides an accurate and cost effective way to predict the consequences of proposed models. Specifically examining the evolution of grain boundaries, this paper aims to present the results of grain boundary motion simulations through a generalized program that streamlines …


Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei Aug 2018

Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential …


High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos Aug 2018

High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos

The Summer Undergraduate Research Fellowship (SURF) Symposium

Concrete and mortar are materials commonly used in construction. Their main compounds are cement, aggregates (sand and gravel) and water. In an effort to increase the sustainability of these materials, the idea of using recycled aggregates from ground old concrete and using it to make mortar and concrete has gained more interest. It has two advantages: it reduces the need to mine for raw materials and lessens the amount of old and defective concrete that is typically put in landfills. But, the use of recycled concrete aggregate lowers the strength of mortars and concretes because the residual compounds in the …


Validation Of Wrinkling-To-Delamination Adhesion Measurement Technique, Allison Chau, Hyeyoung Son, Chelsea S. Davis Aug 2018

Validation Of Wrinkling-To-Delamination Adhesion Measurement Technique, Allison Chau, Hyeyoung Son, Chelsea S. Davis

The Summer Undergraduate Research Fellowship (SURF) Symposium

Polymer thin films have a wide range of applications that span several different industries. Their optical clarity as well as their mechanical rigidness result in their versatile use in applications such as contact lenses, wearable sensors, and flexible electronics. These applications require precise adhesion, so the need for a simple, quantitative adhesion measurement technique is critical. Several methods have already been developed that quantify the adhesion of flexible thin films attached to rigid substrates. However, when the thin films are rigid and the substrates compliant, these methods are insufficient. In the authors’ previous work, an adhesion measurement technique was developed …


Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan Aug 2018

Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan

The Summer Undergraduate Research Fellowship (SURF) Symposium

In electronic assemblies, solder joints are used to create electrical connections, remove heat, and mechanically support the components. When an electronic device is powered on, the solder joints and the board they are attached to heat up, expanding at different rates. Due to the difference in expansion, shear stress is imposed on the solder joints. As the device is powered on and off, this shear stress can eventually fracture the solder joint, causing the device to fail. Therefore, to increase the lifespan of electronics, it is important to investigate the mechanical properties of solder alloys. The present study investigates how …


Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu Aug 2018

Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Indiana Department of Transportation (INDOT) requires a reliable method of determining the early age quality of concrete to improve traffic opening time. We propose to develop an in-situ method that enables an accurate, efficient, and non-destructive health monitoring of concrete using the electromechanical impedance (EMI) technique coupled with a piezoelectric sensor named Lead Zirconate Titanate (PZT). The test was conducted by mounting a PZT sensor on mortar samples. The PZT sensor was then excited by a voltage to track the strengthening of samples. The data obtained from the EMI technique was refined using the Root Mean Square Deviation (RMSD) …


Building Modern Cloud Accessible Tools For Materials Simulations, Nicholas J. Finan, Saaketh Desai, Samuel Reeve, Alejandro Strachan Aug 2018

Building Modern Cloud Accessible Tools For Materials Simulations, Nicholas J. Finan, Saaketh Desai, Samuel Reeve, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

In recent years, commercial computer systems have grown more user friendly, allowing for new users to quickly and easily make contributions. Unfortunately, this trend is not as apparent in the field of computational materials simulations. The tools used by researchers in this field have remained just as esoteric as the systems of the past. While the methods used in materials simulations continue to grow in complexity and accuracy, the user experience has been neglected entirely. This project aims to eliminate the need for hours spent adjusting file formats and searching for preexisting code, and instead allow researchers to focus on …


Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker Aug 2018

Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and other marine creatures adhere very well in underwater environments, having the ability to withstand the force of the sea. These animals have inspired synthetic biomimetic adhesives for wet systems, presenting potential for biomedical applications. However, most current commercial adhesives tend to be brittle, not resisting repetitive movements. This study assesses toughening strategies to improve the mussel-inspired adhesives’ ductility while maintaining its strength. The strategies included altering the polymer’s chemical structure by changing the percentage of polyethylene glycol (PEG) in the molecule and by adding fillers, such as calcium carbonate, silica and nacre - a calcium carbonate compound found …


Spatial Variation Of Surface Residual Stress In Metallic Materials, Chengyang Zhang, David Bahr, Siavash Ghanbari, Raheleh Mohammad Rahimi Aug 2018

Spatial Variation Of Surface Residual Stress In Metallic Materials, Chengyang Zhang, David Bahr, Siavash Ghanbari, Raheleh Mohammad Rahimi

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shot peening is commonly used to reduce fatigue failures in industrial parts by introducing compressive residual stress into the surface of a material. However, it is challenging to assess the performance of the parts without destroying them. Solving this problem requires a combined model that predicts both recrystallization and residual stress using experimental measurements and predictive computational modelling. Experiments were performed to prove that the surface properties of materials after thermal treatments can be accessed, and the spatial variation of residual stress in metallic materials, including the relationship between surface and subsurface behavior can be evaluated. This process involves investigating …


Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell Aug 2018

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ceramic and semiconductor research is limited in its ability to create holistic representations of data in concise, easily-accessible file formats or visual data representations. These materials are used in everyday electronics, and optimizing their electrical and physical properties is important for developing more advanced computational technologies. There is a desire to understand how changing the composition of the ceramic alters the shape and structure of the grown crystals. However, few accessible tools exist to generate a dataset with the proper organization to understand correlations between grain orientation and crystallographic orientation. This paper outlines an approach to analyzing the crystal structure …