Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Materials Science and Engineering

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi Dec 2018

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi

Graduate Theses and Dissertations

This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET …


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li Dec 2018

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Graduate Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of InN/GaN …


Measuring Characteristic Shrinkage Variability Due To Metal Loading Effects In Low Temperature Co-Fired Ceramic Using Image Processing, John Ezekiel Zumbro Dec 2018

Measuring Characteristic Shrinkage Variability Due To Metal Loading Effects In Low Temperature Co-Fired Ceramic Using Image Processing, John Ezekiel Zumbro

Graduate Theses and Dissertations

Low temperature co-fired ceramic (LTCC) has many benefits when it comes to electronic packaging due to the low dielectric loss, reliability in extreme environments, and high breakdown voltage. Though the ceramic has a lot of benefits it is not widely used due to the high cost and complexities associated with manufacturing. One of these issues with manufacturing is compensating for the shrinkage of the ceramic, this is accomplished by using an expansion factor, creating the “green” or manufactured design. This expansion factor is approximated through knowledge of the ceramic factors such as the metal loading, layers of ceramic tape, firing …


Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi Dec 2018

Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi

Graduate Theses and Dissertations

The bright future of silicon (Si) photonics has attracted research interest worldwide. The ultimate goal of this growing field is to develop a group IV based Si foundries that integrate Si-photonics with the current complementary metal–oxide–semiconductor (CMOS) on a single chip for mid-infrared optoelectronics and high speed devices. Even though group IV was used in light detection, such as photoconductors, it is still cannot compete with III-V semiconductors for light generation. This is because most of the group IV elements, such as Si and germanium (Ge), are indirect bandgap materials. Nevertheless, Ge and Si attracted industry attention because they are …


Effects Of Surface-Directed Spinodal Decomposition On Binary Thin-Film Morphology, Michael Brian Wise May 2018

Effects Of Surface-Directed Spinodal Decomposition On Binary Thin-Film Morphology, Michael Brian Wise

Graduate Theses and Dissertations

Preferential wetting can have a significant impact on the kinetics of phase separation in certain systems. The depletion of the wetting component can simply alter domain growth rates or change the structure entirely. In this thesis, we employ a Cahn-Hilliard model to study the evolution of binary thin-films with symmetric surface wetting. Three possible morphologies were identified: discrete, bicontinuous, and a novel quasi-2D bicontinuous structure in which both phases retain continuity throughout the volume as well as on the center xy plane. Using a continuity factor, regions of film thickness versus blend composition were classified as producing a certain morphology. …


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan May 2018

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Graduate Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant energy transfer …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun May 2018

Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun

Graduate Theses and Dissertations

Natural and synthetic polymers and biopolymers have been studied for a variety of applications in food emulsion, biopharmaceutical purification, tissue engineering, and biosensor. The structure and property of polymers and biopolymers are critically important to determine their functions. Molecular dynamics (MD) simulations have a unique advantage to explore the structure and property of polymers and biopolymers from the molecular level. In the dissertation, MD simulations were conducted to study the mechanisms of various biological and chemical processes controlled by polymers and biopolymers based on real-world experimental results.

Seven heptapeptides have been screened from a peptide library in our earlier study …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang May 2018

The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang

Graduate Theses and Dissertations

One of the objectives of this thesis work was to investigate the cathode performance of lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries (LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) sheet using graphene sheet coating on its cathode.

The results of this work show that adding graphene powder improved the performance of LiCoO¬2 as a cathode material. With the incorporation of different weight percentages of graphene powder, the LiBs showed distinct changes in their charging …


Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan May 2018

Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan

Graduate Theses and Dissertations

One challenge of investigating ferroelectrics at the nanoscale has been controlling the stoichiometry during growth. Historically, the growth of barium titanate (BaTiO3) by molecular beam epitaxy has relied on a growth technique called shuttered RHEED. Shuttered RHEED controls the stoichiometry of barium titanate through the precise deposition of alternating layers of BaO and TiO2. While this approach has achieved 1% control of stoichiometry, finding self-limiting mechanisms to lock-in stoichiometry has been the focus of the growth community. The Goldschmidt tolerance factor predicts an unstable perovskite when barium sits in the titanium lattice site. The BaO-TiO2 phase diagram predicts a low-solubility …


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Graduate Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current …


Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang May 2018

Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang

Graduate Theses and Dissertations

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are investigated. A hydrophobic/anti-reflective surface coating which not only repels water from the top glass of a PV panel but at the same time reduces its light reflectance is investigated. COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar energy harvest from 400nm-700nm. The addition of a polymer layer on these ellipsoid rods broadens the light incident angle from 23° to 34°, from which light can be efficiently absorbed. Based on …


Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu May 2018

Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu

Graduate Theses and Dissertations

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in atomic-like energy levels as well as size-dependent electrical and optical properties. Self-assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-established fabrication techniques and versatile optical properties. This dissertation presents the photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown by molecular beam epitaxy, are used in this study. Morphology of these samples was examined using atomic force …


Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan May 2018

Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan

Graduate Theses and Dissertations

Supercapacitors have attracted a lot attention due to their efficient energy storage. In comparison to batteries, supercapacitors have high capacitance, energy, and power densities per unit mass than conventional capacitors. Carbon based materials are most promising in supercapacitor application due to their outstanding physical and electrochemical behavior. In this work, a facile method to synthesize a nanocomposite electrode consisting of annealed carbon from carbon ink and MoS2 was demonstrated. Effects of various aqueous and solid electrolytes were studied. It was found that the nanocomposite electrode with 10% MoS2 and 1M Na2SO4 as the aqueous electrolyte tested using the three electrode …


Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat May 2018

Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat

Graduate Theses and Dissertations

The objective of this research was to understand the evolution of surface texture under boundary/mixed lubrication (BL). Significant material/energy losses occur during BL because of direct contact between the two surfaces. Traditionally, tribofilms have been studied extensively for BL while textures have been used as a static engineering design parameter to enhance lubricant film properties. However, texture is dynamic at the tribological mating interface, where both physical and chemical interactions are continuously modulated. The evolution and the interplay between the tribofilm and texture is least studied in the literature, which is the focus of this research.

MoS2-based lubricants, known for …


Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir May 2018

Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir

Graduate Theses and Dissertations

Investigating semiconductor materials and devices at the nanoscale has become crucial in order to maintain the exponential development in today’s technology. There is a critical need for making devices lower in power consumption and smaller in size. Nanoscale semiconductor materials provide a powerful platform for optoelectronic device engineers. They own interesting properties which include enhanced photoconductivity and size-tunable interband transitions.

In this research, different types of nanostructures were investigated for optoelectronic devices: nanocrystals, nanowires, and thin-films. First, lead selenide nanocrystals with narrow bandgap were synthesized, size-tailored, and functionalized with molecular ligands for the application of uncooled near-infrared photodetectors. The devices …