Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Viscoelastic Analysis And Fatigue Characterization Of Bituminous Materials In Two Length Scales Under The Influence Of Aging, Santosh Reddy Kommidi Aug 2017

Viscoelastic Analysis And Fatigue Characterization Of Bituminous Materials In Two Length Scales Under The Influence Of Aging, Santosh Reddy Kommidi

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Fatigue cracking in asphalt concrete (AC) is of immense importance to pavement design and analysis because it is one of the most important forms of distress that can lead to structural failure in pavement. Once started, these types of cracks can be combined with other environmental factors leading to detrimental effects such as faster rates of pavement deterioration and shortened pavement life and functionality.

Currently AASHTO TP101, also known as linear amplitude sweep (LAS) specification, is being widely used to evaluate the ability of an asphalt binder to resist fatigue. The LAS method, although mechanistic in its approach, has certain …


Molecular Dynamics Modeling And Simulation Of Bitumen Chemical Aging, Farshad Fallah Jul 2017

Molecular Dynamics Modeling And Simulation Of Bitumen Chemical Aging, Farshad Fallah

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Chemical aging of asphalt binder leads to significant changes in its mechanical and rheological properties, resulting in poor pavement behavior and distress. Various laboratory methods have been used to simulate asphalt aging during the service life of the pavement. However, controversy exists regarding the capability of these methods to predict field aging, as various factors interact with the pavement during service and the mechanism behind aging is not fully understood. The two main outcomes of chemical aging are oxidation of asphalt molecules, and change in asphalt SARA (saturate, aromatic, resin, and asphaltene) fractions. Reaction of oxygen with asphalt components forms …