Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera May 2012

Structural Dna Origami: Engineering Supermolecular Self-Assembly For Nanodevice Fabrication, Craig Marshal Onodera

Boise State University Theses and Dissertations

Two challenges encountered in nanotechnology are the ability to create nanostructures inexpensively and the ability to arrange nanomaterials with a precision commensurate with their size. In nature, nanostructures are created using a bottom-up approach, whereby molecules hierarchically self-assemble into larger systems. Similarly, structural DNA nanotechnology harnesses the programmability, specificity, and structural integrity of DNA to engineer synthetic, self-assembled materials. For example, during scaffolded DNA origami, a long single stranded DNA polymer is artificially folded into nanostructures using short oligonucleotides. Once folded, two- and three-dimensional nanostructures may be decorated with proteins, metallic nanoparticles, and semiconductor quantum dots. Using gold nanoparticles and …