Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Materials Science and Engineering

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang Jan 2013

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang

Wayne State University Dissertations

This dissertation study focuses on (1) probing the magneto-structural phase transformation in nanoscale MnAs; (2) evaluation of the size-dependent phase stability of type-B MnAs (prepared by rapid injection); and (3) developing a general synthetic method for transition metal arsenide nanoparticles.

Discrete MnAs nanoparticles that adopt different structures at room temperature (type-A, α-structure and type-B, β-structure) have been prepared by the solution-phase arrested precipitation method. Atomic pair distribution and Rietveld refinement were employed on synchrotron data to explore the structural transitions of the bulk and nanoparticle samples, and these results were compared to AC magnetic susceptibility measurements of the samples. The …


Green Diesel Production Via Catalytic Hydrogenation/Decarboxylation Of Triglycerides And Fatty Acids Of Vegetable Oil And Brown Grease, Elvan Sari Jan 2013

Green Diesel Production Via Catalytic Hydrogenation/Decarboxylation Of Triglycerides And Fatty Acids Of Vegetable Oil And Brown Grease, Elvan Sari

Wayne State University Dissertations

Increase in the petroleum prices, projected increases in the world’s energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel— a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel– hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating …


Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang Jan 2013

Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang

Wayne State University Theses

It is desired to have artificial optical materials with controllable optical properties. Optical glass is the most common optical material for various applications. This research will attempt to create a thin layer on the substrate with controllable optical properties. The thin layer is a composite material with nanoscale features and controllable refractive index. Two-dimensional (2D) nanostructures will be created on the surface of optical glass using nanosphere lithography. In comparison with conventional techniques, this approach is more efficient and cost-effective for the creation of large areas of thin surface layers as an artificial material. A uniform monolayer of nanospheres will …


Bioreducible Polymer Nanosystems For Gene Delivery, Yi Zou Jan 2013

Bioreducible Polymer Nanosystems For Gene Delivery, Yi Zou

Wayne State University Dissertations

This dissertation describes the research of bioreducible polymers for gene delivery. A series of bioreducible poly(amido amine)s (PAAs) were synthesized. They complex with DNA forming polyplex nanoparticles and layer-by-layer (LbL) thin films as gene delivery vectors. Atomic force microscope (AFM), especially in situ real time AFM, provides a microscopic view of DNA release dynamics. It is shown that the depolymerization of bioreducible polymer triggers DNA release via disulfide-thiol exchange reaction. The AFM images revealed a three-stage pathway beginning with a morphological change from metastable nanostructures into the more favorable toroid structure. Then toroids interact with each other by aggregation and …


Engineering Nanoparticle And Nanoring Patterns For The Study Of Molecular Crystallization Under Nanoconfinement, Sunxi Wang Jan 2013

Engineering Nanoparticle And Nanoring Patterns For The Study Of Molecular Crystallization Under Nanoconfinement, Sunxi Wang

Wayne State University Dissertations

This dissertation focuses on generating the inorganic nanoparticle/organic nanorod hybrid nanostructures by the strategy of nanoparticle induced molecular crystallization developed by us and the new electrochemical method. We synthesize the gold nanoparticles with different sizes and functional groups and then fabricate the nanohybrids with fatty acid nanorods by spin coating method. Atomic force microscope monitors the topography of the hybrid nanostructures to help understand the underlying mechanism of the crystallization process. This successful self-assembled method could be used to fabricate nanohybrids based on seed-mediated nucleation. Also the novel "nano-flasks" have been generated by particle lithography method, which could be served …


Molecular Crystallization Directed By Nanoparticles And Nanopatterns, Li Li Jan 2013

Molecular Crystallization Directed By Nanoparticles And Nanopatterns, Li Li

Wayne State University Dissertations

This dissertation focuses on nanoparticle/nanopattern-induced molecular self-assembly and crystallization. We propose a universal strategy to synthesize organic/inorganic hybrid nanostructures using inorganic nanoparticles and nanoparticle arrays to induce organic crystalline compound nucleation and crystallization. The nanoconfinement effect will be addressed to study molecular crystallization by changing nanoparticle size, curvature and separation distance. Atomic force microscopy (AFM) is the main characterization tool to investigate the topography of the hybrid nanostructures and the nucleation and crystallization process. This work will contribute to the understanding of seed mediated nucleation and crystallization, molecular ordering under nanoconfinement and hybrid nanomaterials.


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …