Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Materials Science and Engineering

Novel Design And Facile Synthesis Of Functional Nanostructures For Energy And Environmental Application, Zhuojun Wang Jan 2021

Novel Design And Facile Synthesis Of Functional Nanostructures For Energy And Environmental Application, Zhuojun Wang

Wayne State University Theses

Environmental pollution and energy crisis are two of the major obstacles in the development of a more sustainable society. It is an interesting but technically challenging task to design novel methods for the facile and scalable synthesis of multifunctional materials for applications in both energy storage and environmental remediation. In this thesis, I tried to design and synthesize novel nanostructured materials for energy and environmental applications, achieved highly promising results. I developed a facile electrochemical approach to synthesize the zinc oxide with the zinc element for photocatalytic reactions. It demonstrated dramatically improved performances in degradation of organic pollutant in water, …


Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae Jan 2020

Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae

Wayne State University Theses

Lithium-ion (Li-ion) batteries, as one of the most advanced commercial rechargeable batteries, play a crucial role in modern society as they are extensively used in portable electronic devices. Nevertheless, the limited electrochemical performance and poor thermal management systems of Li-ion batteries have hindered the expansion of their future applications. In search of alternative electrode materials to develop a battery with higher electrochemical performance, lithium (Li) metal has attracted much attention as an ideal alternative anode material due to its high specific capacity and lowest redox potential. However, needle-like Li dendritic growth causes severe safety concerns and thus prohibits practical applications …


Engineering Of Organic Nanocrystals By Electrocrystallization, Mohamed Kilani Jan 2017

Engineering Of Organic Nanocrystals By Electrocrystallization, Mohamed Kilani

Wayne State University Theses

This work discusses the experimental and theoretical methods used to control the morphology of nanocrystals. The hypothesis of the thermodynamic/kinetic control of the morphology was verified. We applied the electrocrystallization to make K(def)TCP nanocrystals and we tuned the electrochemical parameters to determine their influence on the nanocrystals morphologies. The characterization was mainly performed with AFM and FE-SEM. We presented in this work the possibility to control the morphology of K(def)TCP using the electrochemical parameters. The obtained shapes ranged from nanorods to rhombohedral shape, which is reported for the first time. The observed growth behavior was modeled and simulated with a …


Engineering Crystallization Via Phase Field Crystal Model, Deepak Joshi Jan 2017

Engineering Crystallization Via Phase Field Crystal Model, Deepak Joshi

Wayne State University Theses

Charge transfer complex material demonstrate morphological transitions while electro-crystallized on a substrate electrode under varying solute concentration and applied overpotential. It is hypothesized that variations in these parameters affect the thermodynamics and the kinetics of the electro-crystallization process. Having analysed these results, we resort to applying phase field crystal(PFC) model for our theoretical study. Our initial literature review laid foundation to consider PFC model as a powerful tool to study various aspect of crystallization process. In a PFC model the thermodynamic state of a system under study is defined in terms of Helmholtz free energy functional of density profile F=F[ρ(r)].Our …


Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li Jan 2016

Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li

Wayne State University Theses

Supercapacitors (SCs) and Li-ion batteries (LIBs) are two types of important electrical energy storage devices with high power density and high energy density respectively. However, to satisfy the increasing demand of high-performance energy storage devices, the energy density of SCs and power/energy densities of LIBs have to be further improved. The exploration, research, and development of electrode materials with high-performance for applications in SCs and LIBs are still needed to meet the ever-increasing demand on energy and power densities. Herein, the amorphous Ni-Co-Mo ternary hydroxides nanoflakes for SCs and oxides nanoflakes for LIBs with ultrathin stature, abundant open spaces, and …


Enhancement Of Cancer Vaccine Efficacy Via Nanoparticle Or Molecular-Based Adjuvants, Myunggi An Jan 2016

Enhancement Of Cancer Vaccine Efficacy Via Nanoparticle Or Molecular-Based Adjuvants, Myunggi An

Wayne State University Theses

Adjuvants are immunomodulators which enhance immune responses to vaccines. However, parenteral administration of unformulated adjuvants fails to reach lymph nodes (LNs), the anatomic organ where the primary functions of immune cells are orchestrated. The LN-targeting delivery plays the key roles in promoting immune activation and has the great potential to transform disease treatment. The main goal of this thesis is to develop efficient vaccine delivery systems to target therapeutics into draining lymph nodes (dLNs) for ensuring their immunostimulatory activity. We introduced therapeutic applications of activating TLR9 with synthetic CpG oligodeoxynucleotide (ODN) agonists in nanoparticle or molecular form to activate immune …


First-Principles Point Defect Models In Zr7ni10 And Zr2ni7 Binary Intermetallic Compounds And Their Implications In Nickel-Metal Hydride Batteries, Diana Felicia Wong Jan 2015

First-Principles Point Defect Models In Zr7ni10 And Zr2ni7 Binary Intermetallic Compounds And Their Implications In Nickel-Metal Hydride Batteries, Diana Felicia Wong

Wayne State University Theses

Zr-Ni-based alloys as nickel-metal hydride battery anode materials offer low-cost, flexible and tunable battery performance. Zr7Ni10 is an important secondary phase found in multi-phased AB2 Laves-phase-based metal hydride alloys, and the synergetic effect between the Zr-Ni and the Laves phases allows access to the high hydrogen storage of the Zr-Ni phases despite the lower absorption/desorption kinetics. Zr7Ni10 displays a small solubility window for Zr-rich compositions, while Zr2Ni7, with no solubility window, shows poor capacity with good kinetics. Stability of point defects within the crystal structure allows Zr7Ni10 to maintain the same structure at off-stoichiometric compositions, thus it is theorized that …


Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang Jan 2013

Fabrication Of Two-Dimensional Nanostructures On Glass Using Nanosphere Lithography, Elmer Jim Wang

Wayne State University Theses

It is desired to have artificial optical materials with controllable optical properties. Optical glass is the most common optical material for various applications. This research will attempt to create a thin layer on the substrate with controllable optical properties. The thin layer is a composite material with nanoscale features and controllable refractive index. Two-dimensional (2D) nanostructures will be created on the surface of optical glass using nanosphere lithography. In comparison with conventional techniques, this approach is more efficient and cost-effective for the creation of large areas of thin surface layers as an artificial material. A uniform monolayer of nanospheres will …


Electroless Deposition Of Superconducting Magnesium Diboride Thin Films On Various Substrates, Khrupa Saagar Vijayaragavan Jan 2010

Electroless Deposition Of Superconducting Magnesium Diboride Thin Films On Various Substrates, Khrupa Saagar Vijayaragavan

Wayne State University Theses

ABSTRACT

ELECTROLESS DEPOSITION OF SUPERCONDUCTING MAGNESIUM DIBORIDE THIN FILMS ON VARIOUS SUBSTRATES

by

KHRUPA SAAGAR VIJAYARAGAVAN

MAY 2010

Advisor: Dr. Susil K Putatunda

Dr. Gavin Lawes

Major: Chemical Engineering

Degree: Masters of Science

Superconducting thin films of magnesium diboride were synthesized by a novel electroless plating process. Electroless plating shares many similarities to electroplating with the major difference being the absence of a continuous bias voltage. Significantly, this work represents the first investigation where electroless deposition has been used to prepare compounds, as opposed to the elemental metals considered in all previous studies. Magnesium Diboride is a recently discovered superconducting …